Series-parallel Partial Order
   HOME
*



picture info

Series-parallel Partial Order
In order theory, order-theoretic mathematics, a series-parallel partial order is a partially ordered set built up from smaller series-parallel partial orders by two simple composition operations... The series-parallel partial orders may be characterized as the N-free finite partial orders; they have order dimension at most two.. They include weak orders and the reachability relationship in Tree (graph theory), directed trees and directed series–parallel graphs. The comparability graphs of series-parallel partial orders are cographs. Series-parallel partial orders have been applied in job shop scheduling, machine learning of event sequencing in time series data, transmission sequencing of multimedia data, and throughput maximization in dataflow programming. Series-parallel partial orders have also been called multitrees;. however, that name is ambiguous: multitrees also refer to partial orders with no four-element diamond suborder and to other structures formed from multiple tree ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Series-parallel Partial Order
In order theory, order-theoretic mathematics, a series-parallel partial order is a partially ordered set built up from smaller series-parallel partial orders by two simple composition operations... The series-parallel partial orders may be characterized as the N-free finite partial orders; they have order dimension at most two.. They include weak orders and the reachability relationship in Tree (graph theory), directed trees and directed series–parallel graphs. The comparability graphs of series-parallel partial orders are cographs. Series-parallel partial orders have been applied in job shop scheduling, machine learning of event sequencing in time series data, transmission sequencing of multimedia data, and throughput maximization in dataflow programming. Series-parallel partial orders have also been called multitrees;. however, that name is ambiguous: multitrees also refer to partial orders with no four-element diamond suborder and to other structures formed from multiple tree ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Disjoint Union
In mathematics, a disjoint union (or discriminated union) of a family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injection of each A_i into A, such that the images of these injections form a partition of A (that is, each element of A belongs to exactly one of these images). A disjoint union of a family of pairwise disjoint sets is their union. In category theory, the disjoint union is the coproduct of the category of sets, and thus defined up to a bijection. In this context, the notation \coprod_ A_i is often used. The disjoint union of two sets A and B is written with infix notation as A \sqcup B. Some authors use the alternative notation A \uplus B or A \operatorname B (along with the corresponding \biguplus_ A_i or \operatorname_ A_i). A standard way for building the disjoint union is to define A as the set of ordered pairs (x, i) such that x \in A_i, and the injection A_i \to A as x \mapsto (x, i). Example Consider the sets A_0 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orientation (graph Theory)
In graph theory, an orientation of an undirected graph is an assignment of a direction to each edge, turning the initial graph into a directed graph. Oriented graphs A directed graph is called an oriented graph if none of its pairs of vertices is linked by two symmetric edges. Among directed graphs, the oriented graphs are the ones that have no 2-cycles (that is at most one of and may be arrows of the graph). A tournament is an orientation of a complete graph. A polytree is an orientation of an undirected tree. Sumner's conjecture states that every tournament with vertices contains every polytree with vertices. The number of non-isomorphic oriented graphs with vertices (for ) is : 1, 2, 7, 42, 582, 21480, 2142288, 575016219, 415939243032, … . Tournaments are in one-to-one correspondence with complete directed graphs (graphs in which there is a directed edge in one or both directions between every pair of distinct vertices). A complete directed graph can be converted to an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Undirected Graph
In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called '' vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. Graphs are one of the objects of study in discrete mathematics. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Series Parallel Graph
Series may refer to: People with the name * Caroline Series (born 1951), English mathematician, daughter of George Series * George Series (1920–1995), English physicist Arts, entertainment, and media Music * Series, the ordered sets used in serialism including tone rows * Harmonic series (music) * Serialism, including the twelve-tone technique Types of series in arts, entertainment, and media * Anime series * Book series * Comic book series * Film series * Manga series * Podcast series * Radio series * Television series * "Television series", the Australian, British, and a number of others countries' equivalent term for the North American "television season", a set of episodes produced by a television serial * Video game series * Web series Mathematics and science * Series (botany), a taxonomic rank between genus and species * Series (mathematics), the sum of a sequence of terms * Series (stratigraphy), a stratigraphic unit deposited during a certain interval of geologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Covering Relation
In mathematics, especially order theory, the covering relation of a partially ordered set is the binary relation which holds between comparable elements that are immediate neighbours. The covering relation is commonly used to graphically express the partial order by means of the Hasse diagram. Definition Let X be a set with a partial order \le. As usual, let < be the relation on X such that x if and only if x\le y and x\neq y. Let x and y be elements of X. Then y covers x, written x\lessdot y, if x and there is no element z such that x. Equivalently, y covers x if the interval
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transitive Reduction
In the mathematical field of graph theory, a transitive reduction of a directed graph is another directed graph with the same vertices and as few edges as possible, such that for all pairs of vertices , a (directed) path from to in exists if and only if such a path exists in the reduction. Transitive reductions were introduced by , who provided tight bounds on the computational complexity of constructing them. More technically, the reduction is a directed graph that has the same reachability relation as . Equivalently, and its transitive reduction should have the same transitive closure as each other, and the transitive reduction of should have as few edges as possible among all graphs with that property. The transitive reduction of a finite directed acyclic graph (a directed graph without directed cycles) is unique and is a subgraph of the given graph. However, uniqueness fails for graphs with (directed) cycles, and for infinite graphs not even existence is guaranteed. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Directed Acyclic Graph
In mathematics, particularly graph theory, and computer science, a directed acyclic graph (DAG) is a directed graph with no directed cycles. That is, it consists of vertices and edges (also called ''arcs''), with each edge directed from one vertex to another, such that following those directions will never form a closed loop. A directed graph is a DAG if and only if it can be topologically ordered, by arranging the vertices as a linear ordering that is consistent with all edge directions. DAGs have numerous scientific and computational applications, ranging from biology (evolution, family trees, epidemiology) to information science (citation networks) to computation (scheduling). Directed acyclic graphs are sometimes instead called acyclic directed graphs or acyclic digraphs. Definitions A graph is formed by vertices and by edges connecting pairs of vertices, where the vertices can be any kind of object that is connected in pairs by edges. In the case of a directed graph, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Separable Permutation
In combinatorial mathematics, a separable permutation is a permutation that can be obtained from the trivial permutation 1 by direct sums and skew sums. Separable permutations may be characterized by the forbidden permutation patterns 2413 and 3142;; , Theorem 2.2.36, p. p.58. they are also the permutations whose permutation graphs are cographs and the permutations that realize the series-parallel partial orders. It is possible to test in polynomial time whether a given separable permutation is a pattern in a larger permutation, or to find the longest common subpattern of two separable permutations. Definition and characterization define a separable permutation to be a permutation that has a ''separating tree'': a rooted binary tree in which the elements of the permutation appear (in permutation order) at the leaves of the tree, and in which the descendants of each tree node form a contiguous subset of these elements. Each interior node of the tree is either a positive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Extension
In order theory, a branch of mathematics, a linear extension of a partial order is a total order (or linear order) that is compatible with the partial order. As a classic example, the lexicographic order of totally ordered sets is a linear extension of their product order. Definitions Given any partial orders \,\leq\, and \,\leq^*\, on a set X, \,\leq^*\, is a linear extension of \,\leq\, exactly when (1) \,\leq^*\, is a total order and (2) for every x, y \in X, if x \leq y, then x \leq^* y. It is that second property that leads mathematicians to describe \,\leq^*\, as extending \,\leq. Alternatively, a linear extension may be viewed as an order-preserving bijection from a partially ordered set P to a chain C on the same ground set. Order-extension principle The statement that every partial order can be extended to a total order is known as the order-extension principle. A proof using the axiom of choice was first published by Edward Marczewski in 1930. Marczewski write ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hasse Diagram
In order theory, a Hasse diagram (; ) is a type of mathematical diagram used to represent a finite partially ordered set, in the form of a drawing of its transitive reduction. Concretely, for a partially ordered set ''(S, ≤)'' one represents each element of ''S'' as a vertex in the plane and draws a line segment or curve that goes ''upward'' from ''x'' to ''y'' whenever ''y'' ≠ ''x'' and ''y'' covers ''x'' (that is, whenever ''x'' ≤ ''y'' and there is no ''z'' such that ''x'' ≤ ''z'' ≤ ''y''). These curves may cross each other but must not touch any vertices other than their endpoints. Such a diagram, with labeled vertices, uniquely determines its partial order. The diagrams are named after Helmut Hasse (1898–1979); according to , they are so called because of the effective use Hasse made of them. However, Hasse was not the first to use these diagrams. One example that predates Hasse can be found in . Although Hasse diagrams were originally devised as a technique for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fence (mathematics)
In mathematics, a fence, also called a zigzag poset, is a partially ordered set (poset) in which the order relations form a path with alternating orientations: :acehbdfi \cdots A fence may be finite, or it may be formed by an infinite alternating sequence extending in both directions. The incidence posets of path graphs form examples of fences. A linear extension of a fence is called an alternating permutation; André's problem of counting the number of different linear extensions has been studied since the 19th century. The solutions to this counting problem, the so-called Euler zigzag numbers or up/down numbers, are: :1, 1, 2, 4, 10, 32, 122, 544, 2770, 15872, 101042. :. The number of antichains in a fence is a Fibonacci number; the distributive lattice with this many elements, generated from a fence via Birkhoff's representation theorem, has as its graph the Fibonacci cube. A partially ordered set is series-parallel if and only if it does not have four elements forming a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]