Semisimple Algebra
   HOME
*





Semisimple Algebra
In ring theory, a branch of mathematics, a semisimple algebra is an associative artinian algebra over a field which has trivial Jacobson radical (only the zero element of the algebra is in the Jacobson radical). If the algebra is finite-dimensional this is equivalent to saying that it can be expressed as a Cartesian product of simple subalgebras. Definition The Jacobson radical of an algebra over a field is the ideal consisting of all elements that annihilate every simple left-module. The radical contains all nilpotent ideals, and if the algebra is finite-dimensional, the radical itself is a nilpotent ideal. A finite-dimensional algebra is then said to be ''semisimple'' if its radical contains only the zero element. An algebra ''A'' is called ''simple'' if it has no proper ideals and ''A''2 = ≠ . As the terminology suggests, simple algebras are semisimple. The only possible ideals of a simple algebra ''A'' are ''A'' and . Thus if ''A'' is simple, then ''A'' is not nilpote ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Theory
In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities. Commutative rings are much better understood than noncommutative ones. Algebraic geometry and algebraic number theory, which provide many natural examples of commutative rings, have driven much of the development of commutative ring theory, which is now, under the name of ''commutative algebra'', a major area of modern mathematics. Because these three fields (algebraic geometry, algebraic number theory and commutative al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Associative Algebra
In mathematics, an associative algebra ''A'' is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field ''K''. The addition and multiplication operations together give ''A'' the structure of a ring; the addition and scalar multiplication operations together give ''A'' the structure of a vector space over ''K''. In this article we will also use the term ''K''-algebra to mean an associative algebra over the field ''K''. A standard first example of a ''K''-algebra is a ring of square matrices over a field ''K'', with the usual matrix multiplication. A commutative algebra is an associative algebra that has a commutative multiplication, or, equivalently, an associative algebra that is also a commutative ring. In this article associative algebras are assumed to have a multiplicative identity, denoted 1; they are sometimes called unital associative algebras for clarificatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Artinian Ring
In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are named after Emil Artin, who first discovered that the descending chain condition for ideals simultaneously generalizes finite rings and rings that are finite-dimensional vector spaces over fields. The definition of Artinian rings may be restated by interchanging the descending chain condition with an equivalent notion: the minimum condition. Precisely, a ring is left Artinian if it satisfies the descending chain condition on left ideals, right Artinian if it satisfies the descending chain condition on right ideals, and Artinian or two-sided Artinian if it is both left and right Artinian. For commutative rings the left and right definitions coincide, but in general they are distinct from each other. The Artin–Wedderburn theorem ch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other result ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jacobson Radical
In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R- modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left-right symmetric. The Jacobson radical of a ring is frequently denoted by J(R) or \operatorname(R); the former notation will be preferred in this article, because it avoids confusion with other radicals of a ring. The Jacobson radical is named after Nathan Jacobson, who was the first to study it for arbitrary rings in . The Jacobson radical of a ring has numerous internal characterizations, including a few definitions that successfully extend the notion to rings without unity. The radical of a module extends the definition of the Jacobson radical to include modules. The Jacobson radical plays a prominent role in many ring and module theoretic results, such as Nakayama's lemma. Def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simple Algebra
In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field. The center of a simple ring is necessarily a field. It follows that a simple ring is an associative algebra over this field. So, simple algebra and ''simple ring'' are synonyms. Several references (e.g., Lang (2002) or Bourbaki (2012)) require in addition that a simple ring be left or right Artinian (or equivalently semi-simple). Under such terminology a non-zero ring with no non-trivial two-sided ideals is called quasi-simple. Rings which are simple as rings but are not a simple module over themselves do exist: a full matrix ring over a field does not have any nontrivial ideals (since any ideal of M_n(R) is of the form M_n(I) with I an ideal of R), but has nontrivial left ideals (for example, the sets of matrices which have some fixed zero columns). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nilpotent Ideal
In mathematics, more specifically ring theory, an ideal ''I'' of a ring ''R'' is said to be a nilpotent ideal if there exists a natural number ''k'' such that ''I''''k'' = 0. By ''I''''k'', it is meant the additive subgroup generated by the set of all products of ''k'' elements in ''I''. Therefore, ''I'' is nilpotent if and only if there is a natural number ''k'' such that the product of any ''k'' elements of ''I'' is 0. The notion of a nilpotent ideal is much stronger than that of a nil ideal in many classes of rings. There are, however, instances when the two notions coincide—this is exemplified by Levitzky's theorem. The notion of a nilpotent ideal, although interesting in the case of commutative rings, is most interesting in the case of noncommutative rings. Relation to nil ideals The notion of a nil ideal has a deep connection with that of a nilpotent ideal, and in some classes of rings, the two notions coincide. If an ideal is nilpotent, it is of course nil, but a nil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Composition Series
In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many naturally occurring modules are not semisimple, hence cannot be decomposed into a direct sum of simple modules. A composition series of a module ''M'' is a finite increasing filtration of ''M'' by submodules such that the successive quotients are simple and serves as a replacement of the direct sum decomposition of ''M'' into its simple constituents. A composition series may not exist, and when it does, it need not be unique. Nevertheless, a group of results known under the general name Jordan–Hölder theorem asserts that whenever composition series exist, the '' isomorphism classes'' of simple pieces (although, perhaps, not their ''location'' in the composition series in question) and their multiplicities are uniquely determined. Compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Idempotent Element (ring Theory)
In ring theory, a branch of abstract algebra, an idempotent element or simply idempotent of a ring is an element ''a'' such that . That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that for any positive integer ''n''. For example, an idempotent element of a matrix ring is precisely an idempotent matrix. For general rings, elements idempotent under multiplication are involved in decompositions of modules, and connected to homological properties of the ring. In Boolean algebra, the main objects of study are rings in which all elements are idempotent under both addition and multiplication. Examples Quotients of Z One may consider the ring of integers modulo ''n'' where ''n'' is squarefree. By the Chinese remainder theorem, this ring factors into the product of rings of integers modulo ''p'' where ''p'' is prime. Now each of these factors is a field, so it is clear that the factors' only idempotents will be 0 a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Idempotent Element (ring Theory)
In ring theory, a branch of abstract algebra, an idempotent element or simply idempotent of a ring is an element ''a'' such that . That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that for any positive integer ''n''. For example, an idempotent element of a matrix ring is precisely an idempotent matrix. For general rings, elements idempotent under multiplication are involved in decompositions of modules, and connected to homological properties of the ring. In Boolean algebra, the main objects of study are rings in which all elements are idempotent under both addition and multiplication. Examples Quotients of Z One may consider the ring of integers modulo ''n'' where ''n'' is squarefree. By the Chinese remainder theorem, this ring factors into the product of rings of integers modulo ''p'' where ''p'' is prime. Now each of these factors is a field, so it is clear that the factors' only idempotents will be 0 a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joseph Wedderburn
Joseph Henry Maclagan Wedderburn FRSE FRS (2 February 1882 – 9 October 1948) was a Scottish mathematician, who taught at Princeton University for most of his career. A significant algebraist, he proved that a finite division algebra is a field, and part of the Artin–Wedderburn theorem on simple algebras. He also worked on group theory and matrix algebra. His younger brother was the lawyer Ernest Wedderburn. Life Joseph Wedderburn was the tenth of fourteen children of Alexander Wedderburn of Pearsie, a physician, and Anne Ogilvie. He was educated at Forfar Academy then in 1895 his parents sent Joseph and his younger brother Ernest to live in Edinburgh with their paternal uncle, J R Maclagan Wedderburn, allowing them to attend George Watson's College. This house was at 3 Glencairn Crescent in the West End of the city. In 1898 Joseph entered the University of Edinburgh. In 1903, he published his first three papers, worked as an assistant in the Physical Laboratory o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Division Algebra
In the field of mathematics called abstract algebra, a division algebra is, roughly speaking, an algebra over a field in which division, except by zero, is always possible. Definitions Formally, we start with a non-zero algebra ''D'' over a field. We call ''D'' a division algebra if for any element ''a'' in ''D'' and any non-zero element ''b'' in ''D'' there exists precisely one element ''x'' in ''D'' with ''a'' = ''bx'' and precisely one element ''y'' in ''D'' such that . For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element ''a'' has a multiplicative inverse (i.e. an element ''x'' with ). Associative division algebras The best-known examples of associative division algebras are the finite-dimensional real ones (that is, algebras over the field R of real numbers, which are finite-dimensional as a vector s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]