Screw Theory
   HOME
*



picture info

Screw Theory
Screw theory is the algebraic calculation of pairs of vectors, such as forces and moments or angular and linear velocity, that arise in the kinematics and dynamics of rigid bodies. The mathematical framework was developed by Sir Robert Stawell Ball in 1876 for application in kinematics and statics of mechanisms (rigid body mechanics). Screw theory provides a mathematical formulation for the geometry of lines which is central to rigid body dynamics, where lines form the screw axes of spatial movement and the lines of action of forces. The pair of vectors that form the Plücker coordinates of a line define a unit screw, and general screws are obtained by multiplication by a pair of real numbers and addition of vectors. An important result of screw theory is that geometric calculations for points using vectors have parallel geometric calculations for lines obtained by replacing vectors with screws. This is termed the ''transfer principle.'' Screw theory has become an impor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Robert Stawell Ball
Sir Robert Stawell Ball (1 July 1840 – 25 November 1913) was an Irish astronomer who founded the screw theory. He was Royal Astronomer of Ireland at Dunsink Observatory. Life He was the son of naturalist Robert Ball, and Amelia Gresley Hellicar. He was born in Dublin. and was educated at Trinity College Dublin where he won a scholarship in 1859 and was a senior moderator in both ''mathematics'' and ''experimental and natural science'' in 1861. Ball worked for Lord Rosse from 1865 to 1867. In 1867, he became Professor of Applied Mathematics at the Royal College of Science in Dublin. There he lectured on mechanics and published an elementary account of the science. In 1873, he became a Fellow of the Royal Society. In 1874, he was appointed Royal Astronomer of Ireland and Andrews Professor of Astronomy in the University of Dublin at Dunsink Observatory. Ball contributed to the science of kinematics by delineating the screw displacement: :When Ball and the screw theorists spe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cayley–Klein Metric
In mathematics, a Cayley–Klein metric is a metric on the complement of a fixed quadric in a projective space which is defined using a cross-ratio. The construction originated with Arthur Cayley's essay "On the theory of distance"Cayley (1859), p 82, §§209 to 229 where he calls the quadric the absolute. The construction was developed in further detail by Felix Klein in papers in 1871 and 1873, and subsequent books and papers. The Cayley–Klein metrics are a unifying idea in geometry since the method is used to provide metrics in hyperbolic geometry, elliptic geometry, and Euclidean geometry. The field of non-Euclidean geometry rests largely on the footing provided by Cayley–Klein metrics. Foundations The algebra of throws by Karl von Staudt (1847) is an approach to geometry that is independent of metric. The idea was to use the relation of projective harmonic conjugates and cross-ratios as fundamental to the measure on a line. Another important insight was the Laguerre for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Erlangen Program
In mathematics, the Erlangen program is a method of characterizing geometries based on group theory and projective geometry. It was published by Felix Klein in 1872 as ''Vergleichende Betrachtungen über neuere geometrische Forschungen.'' It is named after the University Erlangen-Nürnberg, where Klein worked. By 1872, non-Euclidean geometries had emerged, but without a way to determine their hierarchy and relationships. Klein's method was fundamentally innovative in three ways: :* Projective geometry was emphasized as the unifying frame for all other geometries considered by him. In particular, Euclidean geometry was more restrictive than affine geometry, which in turn is more restrictive than projective geometry. :* Klein proposed that group theory, a branch of mathematics that uses algebraic methods to abstract the idea of symmetry, was the most useful way of organizing geometrical knowledge; at the time it had already been introduced into the theory of equations in the form o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Geometry
Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines are usually assumed to intersect at a single point (rather than two). Because of this, the elliptic geometry described in this article is sometimes referred to as ''single elliptic geometry'' whereas spherical geometry is sometimes referred to as ''double elliptic geometry''. The appearance of this geometry in the nineteenth century stimulated the development of non-Euclidean geometry generally, including hyperbolic geometry. Elliptic geometry has a variety of properties that differ from those of classical Euclidean plane geometry. For example, the sum of the interior angles of any triangle is always greater than 180°. Definitions In elliptic geometry, two lines perpendicular to a given line must intersect. In fact, the perpendiculars o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Felix Klein
Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and group theory. His 1872 Erlangen program, classifying geometries by their basic symmetry groups, was an influential synthesis of much of the mathematics of the time. Life Felix Klein was born on 25 April 1849 in Düsseldorf, to Prussian parents. His father, Caspar Klein (1809–1889), was a Prussian government official's secretary stationed in the Rhine Province. His mother was Sophie Elise Klein (1819–1890, née Kayser). He attended the Gymnasium in Düsseldorf, then studied mathematics and physics at the University of Bonn, 1865–1866, intending to become a physicist. At that time, Julius Plücker had Bonn's professorship of mathematics and experimental physics, but by the time Klein became his assistant, in 1866, Plücker's interest wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michel Chasles
Michel Floréal Chasles (; 15 November 1793 – 18 December 1880) was a French mathematician. Biography He was born at Épernon in France and studied at the École Polytechnique in Paris under Siméon Denis Poisson. In the War of the Sixth Coalition he was drafted to fight in the defence of Paris in 1814. After the war, he gave up on a career as an engineer or stockbroker in order to pursue his mathematical studies. In 1837 he published the book ''Aperçu historique sur l'origine et le développement des méthodes en géométrie'' ("Historical view of the origin and development of methods in geometry"), a study of the method of reciprocal polars in projective geometry. The work gained him considerable fame and respect and he was appointed Professor at the École Polytechnique in 1841, then he was awarded a chair at the Sorbonne in 1846. A second edition of this book was published in 1875. In 1839, Ludwig Adolph Sohncke (the father of Leonhard Sohncke) translated the original int ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chasles' Theorem (kinematics)
In kinematics, Chasles' theorem, or Mozzi–Chasles' theorem, says that the most general rigid body displacement can be produced by a translation along a line (called its screw axis or Mozzi axis) followed (or preceded) by a rotation about an axis parallel to that line. History The proof that a spatial displacement can be decomposed into a rotation and slide around and along a line is attributed to the astronomer and mathematician Giulio Mozzi (1763), in fact the screw axis is traditionally called asse di Mozzi in Italy. However, most textbooks refer to a subsequent similar work by Michel Chasles dating from 1830. Several other contemporaries of M. Chasles obtained the same or similar results around that time, including G. Giorgini, Cauchy, Poinsot, Poisson and Rodrigues. An account of the 1763 proof by Giulio Mozzi and some of its history can be found here. Proof Mozzi considers a rigid body undergoing first a rotation about an axis passing through the center of mass and then a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Louis Poinsot
Louis Poinsot (3 January 1777 – 5 December 1859) was a French mathematician and physicist. Poinsot was the inventor of geometrical mechanics, showing how a system of forces acting on a rigid body could be resolved into a single force and a couple. Life :Everyone makes for himself a clear idea of the motion of a point, that is to say, of the motion of a corpuscle which one supposes to be infinitely small, and which one reduces by thought in some way to a mathematical point. ::—Louis Poinsot, ''Théorie nouvelle de la rotation des corps'' (1834) Louis was born in Paris on 3 January 1777. He attended the school of Lycée Louis-le-Grand for secondary preparatory education for entrance to the famous École Polytechnique. In October 1794, at age 17, he took the École Polytechnique entrance exam and failed the algebra section but was still accepted. A student there for two years, he left in 1797 to study at École des Ponts et Chaussées to become a civil engineer. Although now on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poinsot's Theorem
In classical mechanics, Poinsot's construction (after Louis Poinsot) is a geometrical method for visualizing the torque-free motion of a rotating rigid body, that is, the motion of a rigid body on which no external forces are acting. This motion has four constants: the kinetic energy of the body and the three components of the angular momentum, expressed with respect to an inertial laboratory frame. The angular velocity vector \boldsymbol\omega of the rigid rotor is ''not constant'', but satisfies Euler's equations. Without explicitly solving these equations, Louis Poinsot was able to visualize the motion of the endpoint of the angular velocity vector. To this end he used the conservation of kinetic energy and angular momentum as constraints on the motion of the angular velocity vector \boldsymbol\omega. If the rigid rotor is symmetric (has two equal moments of inertia), the vector \boldsymbol\omega describes a cone (and its endpoint a circle). This is the torque-free precession ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rigid-body Motion
In physics, a rigid body (also known as a rigid object) is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass. In the study of special relativity, a perfectly rigid body does not exist; and objects can only be assumed to be rigid if they are not moving near the speed of light. In quantum mechanics, a rigid body is usually thought of as a collection of point masses. For instance, molecules (consisting of the point masses: electrons and nuclei) are often seen as rigid bodies (see classification of molecules as rigid rotors). Kinematics Linear and angular position The position of a rigid body is the position of all the particles of which it is composed. To simplify the description of this position, we exploit the property that the body is ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dual Quaternion
In mathematics, the dual quaternions are an 8-dimensional real algebra isomorphic to the tensor product of the quaternions and the dual numbers. Thus, they may be constructed in the same way as the quaternions, except using dual numbers instead of real numbers as coefficients. A dual quaternion can be represented in the form , where ''A'' and ''B'' are ordinary quaternions and ε is the dual unit, which satisfies and commutes with every element of the algebra. Unlike quaternions, the dual quaternions do not form a division algebra. In mechanics, the dual quaternions are applied as a number system to represent rigid transformations in three dimensions. Since the space of dual quaternions is 8-dimensional and a rigid transformation has six real degrees of freedom, three for translations and three for rotations, dual quaternions obeying two algebraic constraints are used in this application. Similar to the way that rotations in 3D space can be represented by quaternions of uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]