Scattering Rate
   HOME
*





Scattering Rate
A formula may be derived mathematically for the rate of scattering when a beam of electrons passes through a material. The interaction picture Define the unperturbed Hamiltonian by H_0, the time dependent perturbing Hamiltonian by H_1 and total Hamiltonian by H. The eigenstates of the unperturbed Hamiltonian are assumed to be : H=H_0+H_1\ : H_0 , k\rang = E(k), k\rang In the interaction picture, the state ket is defined by : , k(t)\rang _I= e^ , k(t)\rang_S= \sum_ c_(t) , k'\rang By a Schrödinger equation, we see : i\hbar \frac , k(t)\rang_I=H_, k(t)\rang_I which is a Schrödinger-like equation with the total H replaced by H_. Solving the differential equation, we can find the coefficient of n-state. : c_(t) =\delta_ - \frac \int_0^t dt' \;\lang k', H_1(t'), k\rang \, e^ where, the zeroth-order term and first-order term are :c_^=\delta_ :c_^=- \frac \int_0^t dt' \;\lang k', H_1(t'), k\rang \, e^ The transition rate The probability of finding , k'\rang is found by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electron Scattering
Electron scattering occurs when electrons are deviated from their original trajectory. This is due to the electrostatic forces within matter interaction or, if an external magnetic field is present, the electron may be deflected by the Lorentz force. This scattering typically happens with solids such as metals, semiconductors and insulators; and is a limiting factor in integrated circuits and transistors. The application of electron scattering is such that it can be used as a high resolution microscope for hadronic systems, that allows the measurement of the distribution of charges for nucleons and nuclear structure. The scattering of electrons has allowed us to understand that protons and neutrons are made up of the smaller elementary subatomic particles called quarks. Electrons may be scattered through a solid in several ways: *Not at all: no electron scattering occurs at all and the beam passes straight through. *Single scattering: when an electron is scattered just once. *Plu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Interaction Picture
In quantum mechanics, the interaction picture (also known as the Dirac picture after Paul Dirac) is an intermediate representation between the Schrödinger picture and the Heisenberg picture. Whereas in the other two pictures either the state vector or the operators carry time dependence, in the interaction picture both carry part of the time dependence of observables. The interaction picture is useful in dealing with changes to the wave functions and observables due to interactions. Most field-theoretical calculations use the interaction representation because they construct the solution to the many-body Schrödinger equation as the solution to the free-particle problem plus some unknown interaction parts. Equations that include operators acting at different times, which hold in the interaction picture, don't necessarily hold in the Schrödinger or the Heisenberg picture. This is because time-dependent unitary transformations relate operators in one picture to the analogous op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schrödinger Equation
The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the subject. The equation is named after Erwin Schrödinger, who postulated the equation in 1925, and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933. Conceptually, the Schrödinger equation is the quantum counterpart of Newton's second law in classical mechanics. Given a set of known initial conditions, Newton's second law makes a mathematical prediction as to what path a given physical system will take over time. The Schrödinger equation gives the evolution over time of a wave function, the quantum-mechanical characterization of an isolated physical system. The equation can be derived from the fact that the time-evolution operator must be unitary, and must therefore be generated by t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Equation
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology. Mainly the study of differential equations consists of the study of their solutions (the set of functions that satisfy each equation), and of the properties of their solutions. Only the simplest differential equations are solvable by explicit formulas; however, many properties of solutions of a given differential equation may be determined without computing them exactly. Often when a closed-form expression for the solutions is not available, solutions may be approximated numerically using computers. The theory of d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modern Quantum Mechanics
''Modern Quantum Mechanics'', often called ''Sakurai'' or ''Sakurai and Napolitano'', is a standard graduate-level quantum mechanics textbook written originally by J. J. Sakurai and edited by San Fu Tuan in 1985, with later editions coauthored by Jim Napolitano. Sakurai died in 1982 before he could finish the textbook and both the first edition of the book, published in 1985 by Benjamin Cummings, and the revised edition of 1994, published by Addison-Wesley, were edited and completed by Tuan posthumously. The book was updated by Napolitano and released two later editions. The second edition was initially published by Addison-Wesley in 2010 and rereleased as an eBook by Cambridge University Press, who released a third edition in 2020. Table of Contents (3rd edition) * Prefaces * Chapter 1: Fundamental Concepts * Chapter 2: Quantum Dynamics * Chapter 3: Theory of Angular Momentum * Chapter 4: Symmetry in Quantum Mechanics * Chapter 5: Approximation Methods * Chapter 6: Scattering ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]