Saxion
   HOME
*





Saxion
The saxion is the scalar superpartner of the axion, and part of a chiral superfield In theoretical physics, a supermultiplet is a representation of a supersymmetry algebra. Then a superfield is a field on superspace which is valued in such a representation. Naïvely, or when considering flat superspace, a superfield can simply .... The axion represents the CP violating theory of the Standard Model. The axion and saxion are examples of the scalar boson class of particles with a very small mass, and a charge of 0. Hypothetical elementary particles {{particle-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axion
An axion () is a hypothetical elementary particle postulated by the Peccei–Quinn theory in 1977 to resolve the strong CP problem in quantum chromodynamics (QCD). If axions exist and have low mass within a specific range, they are of interest as a possible component of cold dark matter. History Strong CP problem As shown by Gerard 't Hooft, strong interactions of the standard model, QCD, possess a non-trivial vacuum structure that in principle permits violation of the combined symmetries of charge conjugation and parity, collectively known as CP. Together with effects generated by weak interactions, the effective periodic strong CP-violating term, , appears as a Standard Model input – its value is not predicted by the theory, but must be measured. However, large CP-violating interactions originating from QCD would induce a large electric dipole moment (EDM) for the neutron. Experimental constraints on the currently unobserved EDM implies CP violation from QCD must be extreme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chiral Superfield
In theoretical physics, a supermultiplet is a representation of a supersymmetry algebra. Then a superfield is a field on superspace which is valued in such a representation. Naïvely, or when considering flat superspace, a superfield can simply be viewed as a function on superspace. Formally, it is a section of an associated supermultiplet bundle. Phenomenologically, superfields are used to describe particles. It is a feature of supersymmetric field theories that particles form pairs, called superpartners where bosons are paired with fermions. These supersymmetric fields are used to build supersymmetric quantum field theories, where the fields are promoted to operators. History Superfields were introduced by Abdus Salam and J. A. Strathdee in their 1974 articlSupergauge Transformations Operations on superfields and a partial classification were presented a few months later by Sergio Ferrara, Julius Wess and Bruno Zumino iSupergauge Multiplets and Superfields Naming and cla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scalar Boson
A scalar boson is a boson whose spin equals zero. ''Boson'' means that the particle's wave function is symmetric under particle exchange and therefore follows Bose–Einstein statistics. The spin-statistics theorem implies that all bosons have an integer-valued spin; the ''scalar'' fixes this value to zero. The name ''scalar boson'' arises from quantum field theory, which demands that fields of spin-zero particles transform like a scalar under Lorentz transformation (i.e. are Lorentz invariant). A pseudoscalar boson is a scalar boson that has odd parity, whereas "regular" scalar bosons have even parity. Examples Scalar * The only fundamental scalar boson in the Standard Model of particle physics is the Higgs boson, the existence of which was confirmed on 14 March 2013 at the Large Hadron Collider by CMS and ATLAS. As a result of this confirmation, the 2013 Nobel Prize in physics was awarded to Peter Higgs and François Englert. * Various known composite particles are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]