HOME
*





Symmetric Key Cryptography
Symmetric-key algorithms are algorithms for cryptography that use the same cryptographic keys for both the encryption of plaintext and the decryption of ciphertext. The keys may be identical, or there may be a simple transformation to go between the two keys. The keys, in practice, represent a shared secret between two or more parties that can be used to maintain a private information link. The requirement that both parties have access to the secret key is one of the main drawbacks of symmetric-key encryption, in comparison to public-key encryption (also known as asymmetric-key encryption). However, symmetric-key encryption algorithms are usually better for bulk encryption. They have a smaller key size, which means less storage space and faster transmission. Due to this, asymmetric-key encryption is often used to exchange the secret key for symmetric-key encryption. Types Symmetric-key encryption can use either stream ciphers or block ciphers. * Stream ciphers encrypt the digits ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Public-key Cryptography
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security. In a public-key encryption system, anyone with a public key can encrypt a message, yielding a ciphertext, but only those who know the corresponding private key can decrypt the ciphertext to obtain the original message. For example, a journalist can publish the public key of an encryption key pair on a web site so that sources can send secret messages to the news organization in ciphertext. Only the journalist who knows the corresponding private key can decrypt the ciphertexts to obtain the sources' messages—an eavesdropp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Twofish
In cryptography, Twofish is a symmetric key block cipher with a block size of 128 bits and key sizes up to 256 bits. It was one of the five finalists of the Advanced Encryption Standard contest, but it was not selected for standardization. Twofish is related to the earlier block cipher Blowfish. Twofish's distinctive features are the use of pre-computed key-dependent S-boxes, and a relatively complex key schedule. One half of an n-bit key is used as the actual encryption key and the other half of the n-bit key is used to modify the encryption algorithm (key-dependent S-boxes). Twofish borrows some elements from other designs; for example, the pseudo-Hadamard transform (PHT) from the SAFER family of ciphers. Twofish has a Feistel structure like DES. Twofish also employs a Maximum Distance Separable matrix. When it was introduced in 1998, Twofish was slightly slower than Rijndael (the chosen algorithm for Advanced Encryption Standard) for 128-bit keys, but somewhat faster for 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Message Authentication Code
In cryptography, a message authentication code (MAC), sometimes known as a ''tag'', is a short piece of information used for authenticating a message. In other words, to confirm that the message came from the stated sender (its authenticity) and has not been changed. The MAC value protects a message's data integrity, as well as its authenticity, by allowing verifiers (who also possess the secret key) to detect any changes to the message content. Terminology The term message integrity code (MIC) is frequently substituted for the term ''MAC'', especially in communications to distinguish it from the use of the latter as ''media access control address'' (''MAC address''). However, some authors use MIC to refer to a message digest, which aims only to uniquely but opaquely identify a single message. RFC 4949 recommends avoiding the term ''message integrity code'' (MIC), and instead using ''checksum'', ''error detection code'', '' hash'', ''keyed hash'', ''message authentication code'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cryptographic Primitive
Cryptographic primitives are well-established, low-level cryptographic algorithms that are frequently used to build cryptographic protocols for computer security systems. These routines include, but are not limited to, one-way hash functions and encryption functions. Rationale When creating cryptographic systems, designers use cryptographic primitives as their most basic building blocks. Because of this, cryptographic primitives are designed to do one very specific task in a precisely defined and highly reliable fashion. Since cryptographic primitives are used as building blocks, they must be very reliable, i.e. perform according to their specification. For example, if an encryption routine claims to be only breakable with number of computer operations, and it is broken with significantly fewer than operations, then that cryptographic primitive has failed. If a cryptographic primitive is found to fail, almost every protocol that uses it becomes vulnerable. Since creating c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




International Data Encryption Algorithm
In cryptography, the International Data Encryption Algorithm (IDEA), originally called Improved Proposed Encryption Standard (IPES), is a symmetric-key block cipher designed by James Massey of ETH Zurich and Xuejia Lai and was first described in 1991. The algorithm was intended as a replacement for the Data Encryption Standard (DES). IDEA is a minor revision of an earlier cipher Proposed Encryption Standard (PES). The cipher was designed under a research contract with the Hasler Foundation, which became part of Ascom-Tech AG. The cipher was patented in a number of countries but was freely available for non-commercial use. The name "IDEA" is also a trademark. The last patents expired in 2012, and IDEA is now patent-free and thus completely free for all uses. IDEA was used in Pretty Good Privacy (PGP) v2.0 and was incorporated after the original cipher used in v1.0, BassOmatic, was found to be insecure. IDEA is an optional algorithm in the OpenPGP standard. Operation IDEA operate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SAFER
In cryptography, SAFER (Secure And Fast Encryption Routine) is the name of a family of block ciphers designed primarily by James Massey (one of the designers of IDEA) on behalf of Cylink Corporation. The early SAFER K and SAFER SK designs share the same encryption function, but differ in the number of rounds and the key schedule. More recent versions — SAFER+ and SAFER++ — were submitted as candidates to the AES process and the NESSIE project respectively. All of the algorithms in the SAFER family are unpatented and available for unrestricted use. SAFER K and SAFER SK The first SAFER cipher was SAFER K-64, published by Massey in 1993, with a 64-bit block size. The "K-64" denotes a key size of 64 bits. There was some demand for a version with a larger 128-bit key, and the following year Massey published such a variant incorporating new key schedule designed by the Singapore Ministry for Home affairs: SAFER K-128. However, both Lars Knudsen and Sean Murphy found minor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Skipjack (cipher)
In cryptography, Skipjack is a block cipher—an algorithm for encryption—developed by the U.S. National Security Agency (NSA). Initially classified, it was originally intended for use in the controversial Clipper chip. Subsequently, the algorithm was declassified. History of Skipjack Skipjack was proposed as the encryption algorithm in a US government-sponsored scheme of key escrow, and the cipher was provided for use in the Clipper chip, implemented in tamperproof hardware. Skipjack is used only for encryption; the key escrow is achieved through the use of a separate mechanism known as the Law Enforcement Access Field (LEAF). The algorithm was initially secret, and was regarded with considerable suspicion by many for that reason. It was declassified on 24 June 1998, shortly after its basic design principle had been discovered independently by the public cryptography community. To ensure public confidence in the algorithm, several academic researchers from outside the gove ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Triple DES
In cryptography, Triple DES (3DES or TDES), officially the Triple Data Encryption Algorithm (TDEA or Triple DEA), is a symmetric-key block cipher, which applies the DES cipher algorithm three times to each data block. The Data Encryption Standard's (DES) 56-bit key is no longer considered adequate in the face of modern cryptanalytic techniques and supercomputing power. A CVE released in 2016, CVE-2016-2183' disclosed a major security vulnerability in DES and 3DES encryption algorithms. This CVE, combined with the inadequate key size of DES and 3DES, NIST has deprecated DES and 3DES for ''new'' applications in 2017, and for ''all'' applications by the end of 2023. It has been replaced with the more secure, more robust AES. While the government and industry standards abbreviate the algorithm's name as TDES (Triple DES) and TDEA (Triple Data Encryption Algorithm), RFC 1851 referred to it as 3DES from the time it first promulgated the idea, and this namesake has since come into wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Data Encryption Standard
The Data Encryption Standard (DES ) is a symmetric-key algorithm for the encryption of digital data. Although its short key length of 56 bits makes it too insecure for modern applications, it has been highly influential in the advancement of cryptography. Developed in the early 1970s at IBM and based on an earlier design by Horst Feistel, the algorithm was submitted to the National Bureau of Standards (NBS) following the agency's invitation to propose a candidate for the protection of sensitive, unclassified electronic government data. In 1976, after consultation with the National Security Agency (NSA), the NBS selected a slightly modified version (strengthened against differential cryptanalysis, but weakened against brute-force attacks), which was published as an official Federal Information Processing Standard (FIPS) for the United States in 1977. The publication of an NSA-approved encryption standard led to its quick international adoption and widespread academic scrutiny. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kuznyechik
Kuznyechik (russian: Кузнечик, literally "grasshopper") is a symmetric block cipher. It has a block size of 128 bits and key length of 256 bits. It is defined in the National Standard of the Russian Federation GOST R 34.12-2015 and also in RFC 7801. The name of the cipher can be translated from Russian as grasshopper, however, the standard explicitly says that the English name for the cipher is ''Kuznyechik'' (). The designers claim that by naming the cipher Kuznyechik they follow the trend of difficult to pronounce algorithm names set up by Rijndael and Keccak. There is also a rumor that the cipher was named after its creators: A. S. Kuzmin, A. A. Nechaev and Company (Russian: Кузьмин, Нечаев и Компания). The standard GOST R 34.12-2015 defines the new cipher in addition to the old GOST block cipher (now called Magma) as one and does not declare the old cipher obsolete. Kuznyechik is based on a substitution–permutation network, though the key sche ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




CAST5
In cryptography, CAST-128 (alternatively CAST5) is a symmetric-key block cipher used in a number of products, notably as the default cipher in some versions of GPG and PGP. It has also been approved for Government of Canada use by the Communications Security Establishment. The algorithm was created in 1996 by Carlisle Adams and Stafford Tavares using the CAST design procedure. Another member of the CAST family of ciphers, CAST-256 (a former AES candidate) was derived from CAST-128. According to some sources, the CAST name is based on the initials of its inventors, though Bruce Schneier reports the authors' claim that "the name should conjure up images of randomness". CAST-128 is a 12- or 16-round Feistel network with a 64-bit block size and a key size of between 40 and 128 bits (but only in 8-bit increments). The full 16 rounds are used when the key size is longer than 80 bits. Components include large 8×32-bit S-boxes based on bent functions, key-dependent rotations, mod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Blowfish (cipher)
Blowfish is a symmetric-key block cipher, designed in 1993 by Bruce Schneier and included in many cipher suites and encryption products. Blowfish provides a good encryption rate in software, and no effective cryptanalysis of it has been found to date. However, the Advanced Encryption Standard (AES) now receives more attention, and Schneier recommends Twofish for modern applications. Schneier designed Blowfish as a general-purpose algorithm, intended as an alternative to the aging DES and free of the problems and constraints associated with other algorithms. At the time Blowfish was released, many other designs were proprietary, encumbered by patents, or were commercial or government secrets. Schneier has stated that "Blowfish is unpatented, and will remain so in all countries. The algorithm is hereby placed in the public domain, and can be freely used by anyone." Notable features of the design include key-dependent S-boxes and a highly complex key schedule. The algorithm Bl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]