Superalgebra
In mathematics and theoretical physics, a superalgebra is a Z2-graded algebra. That is, it is an algebra over a commutative ring or field with a decomposition into "even" and "odd" pieces and a multiplication operator that respects the grading. The prefix ''super-'' comes from the theory of supersymmetry in theoretical physics. Superalgebras and their representations, supermodules, provide an algebraic framework for formulating supersymmetry. The study of such objects is sometimes called super linear algebra. Superalgebras also play an important role in related field of supergeometry where they enter into the definitions of graded manifolds, supermanifolds and superschemes. Formal definition Let ''K'' be a commutative ring. In most applications, ''K'' is a field of characteristic 0, such as R or C. A superalgebra over ''K'' is a ''K''-module ''A'' with a direct sum decomposition :A = A_0\oplus A_1 together with a bilinear multiplication ''A'' × ''A'' → '' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supersymmetry
In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a ''"selectron"'' (superpartner electron), a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly " unbroken" supersymmetry, each pair of superpartners would share the same mass and internal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supermodule
In mathematics, a supermodule is a Z2-graded module over a superring or superalgebra. Supermodules arise in super linear algebra which is a mathematical framework for studying the concept supersymmetry in theoretical physics. Supermodules over a commutative superalgebra can be viewed as generalizations of super vector spaces over a (purely even) field ''K''. Supermodules often play a more prominent role in super linear algebra than do super vector spaces. These reason is that it is often necessary or useful to extend the field of scalars to include odd variables. In doing so one moves from fields to commutative superalgebras and from vector spaces to modules. :''In this article, all superalgebras are assumed be associative and unital unless stated otherwise.'' Formal definition Let ''A'' be a fixed superalgebra. A right supermodule over ''A'' is a right module ''E'' over ''A'' with a direct sum decomposition (as an abelian group) :E = E_0 \oplus E_1 such that multiplication ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Super Linear Algebra
In mathematics, a super vector space is a \mathbb Z_2-graded vector space, that is, a vector space over a field \mathbb K with a given decomposition of subspaces of grade 0 and grade 1. The study of super vector spaces and their generalizations is sometimes called super linear algebra. These objects find their principal application in theoretical physics where they are used to describe the various algebraic aspects of supersymmetry. Definitions A super vector space is a \mathbb Z_2-graded vector space with decomposition :V = V_0\oplus V_1,\quad 0, 1 \in \mathbb Z_2 = \mathbb Z/2\mathbb Z. Vectors that are elements of either V_0 or V_1 are said to be ''homogeneous''. The ''parity'' of a nonzero homogeneous element, denoted by , x, , is 0 or 1 according to whether it is in V_0 or V_1, :, x, = \begin0 & x\in V_0\\1 & x\in V_1\end Vectors of parity 0 are called ''even'' and those of parity 1 are called ''odd''. In theoretical physics, the even elements are sometimes called ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Superalgebra
In mathematics, a supercommutative (associative) algebra is a superalgebra (i.e. a Z2-graded algebra) such that for any two homogeneous elements ''x'', ''y'' we have :yx = (-1)^xy , where , ''x'', denotes the grade of the element and is 0 or 1 (in Z) according to whether the grade is even or odd, respectively. Equivalently, it is a superalgebra where the supercommutator : ,y= xy - (-1)^yx always vanishes. Algebraic structures which supercommute in the above sense are sometimes referred to as skew-commutative associative algebras to emphasize the anti-commutation, or, to emphasize the grading, graded-commutative or, if the supercommutativity is understood, simply commutative. Any commutative algebra is a supercommutative algebra if given the trivial gradation (i.e. all elements are even). Grassmann algebras (also known as exterior algebras) are the most common examples of nontrivial supercommutative algebras. The supercenter of any superalgebra is the set of elements that sup ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Clifford Algebra
In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As -algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English mathematician William Kingdon Clifford. The most familiar Clifford algebras, the orthogonal Clifford algebras, are also referred to as (''pseudo-'')''Riemannian Clifford algebras'', as distinct from ''symplectic Clifford algebras''.see for ex. Introduction and basic properties A Clifford algebra is a unital associative algebra that contains and is generated by a vector space over a field , where is equipped with a quad ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alternating Polynomials
In algebra, an alternating polynomial is a polynomial f(x_1,\dots,x_n) such that if one switches any two of the variables, the polynomial changes sign: :f(x_1,\dots,x_j,\dots,x_i,\dots,x_n) = -f(x_1,\dots,x_i,\dots,x_j,\dots,x_n). Equivalently, if one permutes the variables, the polynomial changes in value by the sign of the permutation: :f\left(x_,\dots,x_\right)= \mathrm(\sigma) f(x_1,\dots,x_n). More generally, a polynomial f(x_1,\dots,x_n,y_1,\dots,y_t) is said to be ''alternating in'' x_1,\dots,x_n if it changes sign if one switches any two of the x_i, leaving the y_j fixed. Relation to symmetric polynomials Products of symmetric and alternating polynomials (in the same variables x_1,\dots,x_n) behave thus: * the product of two symmetric polynomials is symmetric, * the product of a symmetric polynomial and an alternating polynomial is alternating, and * the product of two alternating polynomials is symmetric. This is exactly the addition table for parity, with "symmetric" c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graded Manifold
In algebraic geometry, graded manifolds are extensions of the concept of manifolds based on ideas coming from supersymmetry and supercommutative algebra. Both graded manifolds and supermanifolds are phrased in terms of sheaves of graded commutative algebras. However, graded manifolds are characterized by sheaves on smooth manifolds, while supermanifolds are constructed by gluing of sheaves of supervector spaces. Graded manifolds A graded manifold of dimension (n,m) is defined as a locally ringed space (Z,A) where Z is an n-dimensional smooth manifold and A is a C^\infty_Z-sheaf of Grassmann algebras of rank m where C^\infty_Z is the sheaf of smooth real functions on Z. The sheaf A is called the structure sheaf of the graded manifold (Z,A), and the manifold Z is said to be the body of (Z,A). Sections of the sheaf A are called graded functions on a graded manifold (Z,A). They make up a graded commutative C^\infty(Z)-ring A(Z) called the structure ring of (Z,A). The well-known Ba ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supermanifold
In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below. Informal definition An informal definition is commonly used in physics textbooks and introductory lectures. It defines a supermanifold as a manifold with both bosonic and fermionic coordinates. Locally, it is composed of coordinate charts that make it look like a "flat", "Euclidean" superspace. These local coordinates are often denoted by :(x,\theta,\bar) where ''x'' is the ( real-number-valued) spacetime coordinate, and \theta\, and \bar are Grassmann-valued spatial "directions". The physical interpretation of the Grassmann-valued coordinates are the subject of debate; explicit experimental searches for supersymmetry have not yielded any positive results. However, the use of Grassmann variables allow for the tremendous simplification of a number of important mathematical results. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exterior Algebra
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues. The exterior product of two vectors u and v, denoted by u \wedge v, is called a bivector and lives in a space called the ''exterior square'', a vector space that is distinct from the original space of vectors. The magnitude of u \wedge v can be interpreted as the area of the parallelogram with sides u and v, which in three dimensions can also be computed using the cross product of the two vectors. More generally, all parallel plane surfaces with the same orientation and area have the same bivector as a measure of their oriented area. Like the cross product, the exterior product is anticommutative, meanin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graded Ring
In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups R_i such that R_i R_j \subseteq R_. The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading. A graded module is defined similarly (see below for the precise definition). It generalizes graded vector spaces. A graded module that is also a graded ring is called a graded algebra. A graded ring could also be viewed as a graded \Z-algebra. The associativity is not important (in fact not used at all) in the definition of a graded ring; hence, the notion applies to non-associative algebras as well; e.g., one can consider a graded Lie algebra. First properties Generally, the index set of a graded ring is assumed to be the set of nonnegative integers, unless otherwise explicitly specified. This is the case in this article ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graded Algebra
In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups R_i such that R_i R_j \subseteq R_. The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading. A graded module is defined similarly (see below for the precise definition). It generalizes graded vector spaces. A graded module that is also a graded ring is called a graded algebra. A graded ring could also be viewed as a graded \Z-algebra. The associativity is not important (in fact not used at all) in the definition of a graded ring; hence, the notion applies to non-associative algebras as well; e.g., one can consider a graded Lie algebra. First properties Generally, the index set of a graded ring is assumed to be the set of nonnegative integers, unless otherwise explicitly specified. This is the case in this a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |