HOME
*



picture info

Sporadic
In mathematics, a sporadic group is one of the 26 exceptional groups found in the classification of finite simple groups. A simple group is a group ''G'' that does not have any normal subgroups except for the trivial group and ''G'' itself. The classification theorem states that the list of finite simple groups consists of 18 countably infinite plus 26 exceptions that do not follow such a systematic pattern. These 26 exceptions are the sporadic groups. They are also known as the sporadic simple groups, or the sporadic finite groups. Because it is not strictly a group of Lie type, the Tits group is sometimes regarded as a sporadic group, in which case there would be 27 sporadic groups. The monster group is the largest of the sporadic groups, and all but six of the other sporadic groups are subquotients of it. Names Five of the sporadic groups were discovered by Mathieu in the 1860s and the other 21 were found between 1965 and 1975. Several of these groups were predicted t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Classification Of Finite Simple Groups
In mathematics, the classification of the finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six or twenty-seven exceptions, called sporadic. The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004. Simple groups can be seen as the basic building blocks of all finite groups, reminiscent of the way the prime numbers are the basic building blocks of the natural numbers. The Jordan–Hölder theorem is a more precise way of stating this fact about finite groups. However, a significant difference from integer factorization is that such "building blocks" do not necessarily determine a unique group, since there might be many non-isomorphic groups with the same composition series or, put in another way, the extension prob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathieu Group
In group theory, a topic in abstract algebra, the Mathieu groups are the five sporadic simple groups ''M''11, ''M''12, ''M''22, ''M''23 and ''M''24 introduced by . They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 objects. They were the first sporadic groups to be discovered. Sometimes the notation ''M''9, ''M''10, ''M''20 and ''M''21 is used for related groups (which act on sets of 9, 10, 20, and 21 points, respectively), namely the stabilizers of points in the larger groups. While these are not sporadic simple groups, they are subgroups of the larger groups and can be used to construct the larger ones. John Conway has shown that one can also extend this sequence up, obtaining the Mathieu groupoid ''M''13 acting on 13 points. ''M''21 is simple, but is not a sporadic group, being isomorphic to PSL(3,4). History introduced the group ''M''12 as part of an investigation of multiply transitive permutation groups, and briefly mentioned (on page 274) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conway Group
In the area of modern algebra known as group theory, the Conway groups are the three sporadic simple groups Co1, Co2 and Co3 along with the related finite group Co0 introduced by . The largest of the Conway groups, Co0, is the group of automorphisms of the Leech lattice Λ with respect to addition and inner product. It has order : but it is not a simple group. The simple group Co1 of order : =  221395472111323 is defined as the quotient of Co0 by its center, which consists of the scalar matrices ±1. The groups Co2 of order : =  218365371123 and Co3 of order : =  210375371123 consist of the automorphisms of Λ fixing a lattice vector of type 2 and type 3, respectively. As the scalar −1 fixes no non-zero vector, these two groups are isomorphic to subgroups of Co1. The inner product on the Leech lattice is defined as 1/8 the sum of the products of respective co-ordinates of the two multiplicand vectors; it is an integer. The square norm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monster Group
In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group, having order    2463205976112133171923293141475971 = 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 ≈ 8. The finite simple groups have been completely classified. Every such group belongs to one of 18 countably infinite families, or is one of 26 sporadic groups that do not follow such a systematic pattern. The monster group contains 20 sporadic groups (including itself) as subquotients. Robert Griess, who proved the existence of the monster in 1982, has called those 20 groups the ''happy family'', and the remaining six exceptions ''pariahs''. It is difficult to give a good constructive definition of the monster because of its complexity. Martin Gardner wrote a popular account of the monster group in his June 1980 Mathematical Games column in ''Scientific ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conway Group Co1
In the area of modern algebra known as group theory, the Conway group ''Co1'' is a sporadic simple group of order :   221395472111323 : = 4157776806543360000 : ≈ 4. History and properties ''Co1'' is one of the 26 sporadic groups and was discovered by John Horton Conway in 1968. It is the largest of the three sporadic Conway groups and can be obtained as the quotient of ''Co0'' ( group of automorphisms of the Leech lattice Λ that fix the origin) by its center, which consists of the scalar matrices ±1. It also appears at the top of the automorphism group of the even 26-dimensional unimodular lattice II25,1. Some rather cryptic comments in Witt's collected works suggest that he found the Leech lattice and possibly the order of its automorphism group in unpublished work in 1940. The outer automorphism group is trivial and the Schur multiplier has order 2. Involutions Co0 has 4 conjugacy classes of involutions; these collapse to 2 in Co1, but there are 4-eleme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Janko Group J1
In the area of modern algebra known as group theory, the Janko group ''J1'' is a sporadic simple group of order :   233571119 = 175560 : ≈ 2. History ''J1'' is one of the 26 sporadic groups and was originally described by Zvonimir Janko in 1965. It is the only Janko group whose existence was proved by Janko himself and was the first sporadic group to be found since the discovery of the Mathieu groups in the 19th century. Its discovery launched the modern theory of sporadic groups. In 1986 Robert A. Wilson showed that ''J1'' cannot be a subgroup of the monster group. Thus it is one of the 6 sporadic groups called the pariahs. Properties The smallest faithful complex representation of ''J1'' has dimension 56.Jansen (2005), p.123 ''J1'' can be characterized abstractly as the unique simple group with abelian 2-Sylow subgroups and with an involution whose centralizer is isomorphic to the direct product of the group of order two and the alternating group A5 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fischer Group Fi24
In the area of modern algebra known as group theory, the Fischer group ''Fi24'' or F24′ is a sporadic simple group of order :   22131652731113172329 : = 1255205709190661721292800 : ≈ 1. History and properties ''Fi24'' is one of the 26 sporadic groups and is the largest of the three Fischer groups introduced by while investigating 3-transposition groups. It is the 3rd largest of the sporadic groups (after the Monster group and Baby Monster group). The outer automorphism group has order 2, and the Schur multiplier has order 3. The automorphism group is a 3-transposition group Fi24, containing the simple group with index 2. The centralizer of an element of order 3 in the monster group is a triple cover of the sporadic simple group ''Fi24'', as a result of which the prime 3 plays a special role in its theory. Representations The centralizer of an element of order 3 in the monster group is a triple cover of the Fischer group, as a result of which the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fischer Group Fi22
In the area of modern algebra known as group theory, the Fischer group ''Fi22'' is a sporadic simple group of order :   217395271113 : = 64561751654400 : ≈ 6. History ''Fi22'' is one of the 26 sporadic groups and is the smallest of the three Fischer groups. It was introduced by while investigating 3-transposition groups. The outer automorphism group has order 2, and the Schur multiplier has order 6. Representations The Fischer group Fi22 has a rank 3 action on a graph of 3510 vertices corresponding to its 3-transpositions, with point stabilizer the double cover of the group PSU6(2). It also has two rank 3 actions on 14080 points, exchanged by an outer automorphism. Fi22 has an irreducible real representation of dimension 78. Reducing an integral form of this mod 3 gives a representation of Fi22 over the field with 3 elements, whose quotient by the 1-dimensional space of fixed vectors is a 77-dimensional irreducible representation. The perfect tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conway Group Co3
In the area of modern algebra known as group theory, the Conway group ''\mathrm_3'' is a sporadic simple group of order :   210375371123 : = 495766656000 : ≈ 5. History and properties ''\mathrm_3'' is one of the 26 sporadic groups and was discovered by as the group of automorphisms of the Leech lattice \Lambda fixing a lattice vector of type 3, thus length . It is thus a subgroup of \mathrm_0. It is isomorphic to a subgroup of \mathrm_1. The direct product 2\times \mathrm_3 is maximal in \mathrm_0. The Schur multiplier and the outer automorphism group are both trivial. Representations Co3 acts on the unique 23-dimensional even lattice of determinant 4 with no roots, given by the orthogonal complement of a norm 4 vector of the Leech lattice. This gives 23-dimensional representations over any field; over fields of characteristic 2 or 3 this can be reduced to a 22-dimensional faithful representation. Co3 has a doubly transitive permutation representation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conway Group Co2
In the area of modern algebra known as group theory, the Conway group ''Co2'' is a sporadic simple group of order :   218365371123 : = 42305421312000 : ≈ 4. History and properties ''Co2'' is one of the 26 sporadic groups and was discovered by as the group of automorphisms of the Leech lattice Λ fixing a lattice vector of type 2. It is thus a subgroup of Co0. It is isomorphic to a subgroup of Co1. The direct product 2×Co2 is maximal in Co0. The Schur multiplier and the outer automorphism group In mathematics, the outer automorphism group of a group, , is the quotient, , where is the automorphism group of and ) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted . If is trivial and has a t ... are both Trivial group, trivial. Representations Co2 acts as a rank 3 permutation group on 2300 points. These points can be identified with planar hexagons in the Leech lattice having 6 type 2 vertices. Co2 act ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Of Lie Type
In mathematics, specifically in group theory, the phrase ''group of Lie type'' usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase ''group of Lie type'' does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups. The name "groups of Lie type" is due to the close relationship with the (infinite) Lie groups, since a compact Lie group may be viewed as the rational points of a reductive linear algebraic group over the field of real numbers. and are standard references for groups of Lie type. Classical groups An initial approach to this question was the definition and detailed study of the so-called ''classical groups'' over finite and other fields by . These groups were studied by L. E. Dickson a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Janko Group
In the area of modern algebra known as group theory, the Janko groups are the four sporadic simple groups '' J1'', '' J2'', '' J3'' and '' J4'' introduced by Zvonimir Janko. Unlike the Mathieu groups, Conway groups, or Fischer groups, the Janko groups do not form a series, and the relation among the four groups is mainly historical rather than mathematical. History Janko constructed the first of these groups, ''J''1, in 1965 and predicted the existence of ''J''2 and ''J''3. In 1976, he suggested the existence of ''J''4. Later, ''J''2, ''J''3 and ''J''4 were all shown to exist. ''J''1 was the first sporadic simple group discovered in nearly a century: until then only the Mathieu groups were known, ''M''11 and ''M''12 having been found in 1861, and ''M''22, ''M''23 and ''M''24 in 1873. The discovery of ''J''1 caused a great "sensation" and "surprise"The group theorist Bertram Huppert said of ''J''1: "There were a very few things that surprised me in my life... There were ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]