Space-filling Curves
In mathematical analysis, a space-filling curve is a curve whose range contains the entire 2-dimensional unit square (or more generally an ''n''-dimensional unit hypercube). Because Giuseppe Peano (1858–1932) was the first to discover one, space-filling curves in the 2-dimensional plane are sometimes called ''Peano curves'', but that phrase also refers to the Peano curve, the specific example of a space-filling curve found by Peano. Definition Intuitively, a curve in two or three (or higher) dimensions can be thought of as the path of a continuously moving point. To eliminate the inherent vagueness of this notion, Jordan in 1887 introduced the following rigorous definition, which has since been adopted as the precise description of the notion of a ''curve'': In the most general form, the range of such a function may lie in an arbitrary topological space, but in the most commonly studied cases, the range will lie in a Euclidean space such as the 2-dimensional plane (a ''pl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continuous Mapping
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cantor Function
In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero derivative almost everywhere, its value still goes from 0 to 1 as its argument reaches from 0 to 1. Thus, in one sense the function seems very much like a constant one which cannot grow, and in another, it does indeed monotonically grow. It is also called the Cantor ternary function, the Lebesgue function, Lebesgue's singular function, the Cantor–Vitali function, the Devil's staircase, the Cantor staircase function, and the Cantor–Lebesgue function. introduced the Cantor function and mentioned that Scheeffer pointed out that it was a counterexample to an extension of the fundamental theorem of calculus claimed by Harnack. The Cantor function was discussed and popularized by , and . Defin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cantor Space
In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set. In set theory, the topological space 2ω is called "the" Cantor space. Examples The Cantor set itself is a Cantor space. But the canonical example of a Cantor space is the countably infinite topological product of the discrete 2-point space . This is usually written as 2^\mathbb or 2ω (where 2 denotes the 2-element set with the discrete topology). A point in 2ω is an infinite binary sequence, that is a sequence which assumes only the values 0 or 1. Given such a sequence ''a''0, ''a''1, ''a''2,..., one can map it to the real number :\sum_^\infty \frac. This mapping gives a homeomorphism from 2ω onto the Cantor set, demonstrating that 2ω is indeed a Cantor space. Cantor spaces occur abundantly in real analysis. For example, they exist as subspaces in every perfect, complete metric ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hilbert Curve
The Hilbert curve (also known as the Hilbert space-filling curve) is a continuous fractal space-filling curve first described by the German mathematician David Hilbert in 1891, as a variant of the space-filling Peano curves discovered by Giuseppe Peano in 1890. Because it is space-filling, its Hausdorff dimension is 2 (precisely, its image is the unit square, whose dimension is 2 in any definition of dimension; its graph is a compact set homeomorphic to the closed unit interval, with Hausdorff dimension 2). The Hilbert curve is constructed as a limit of piecewise linear curves. The length of the nth curve is \textstyle 2^n - , i.e., the length grows exponentially with n, even though each curve is contained in a square with area 1. Images File:Hilbert curve 1.svg, Hilbert curve, first order File:Hilbert curve 2.svg, Hilbert curves, first and second orders File:Hilbert curve 3.svg, Hilbert curves, first to third orders File:Hilbert curve production rules!.svg, Production rules Fi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory). Hilbert adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set the course for much of the mathematical research of the 20th century. Hilbert and his students contributed significantly to establishing rigor and developed important tools used in modern mathematical physics. Hilbert is known as one of the founders of proof theory and mathematical logic. Life Early life and edu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proof Without Words
In mathematics, a proof without words (or visual proof) is an illustration of an identity or mathematical statement which can be demonstrated as self-evident by a diagram without any accompanying explanatory text. Such proofs can be considered more elegant than formal or mathematically rigorous proofs due to their self-evident nature. When the diagram demonstrates a particular case of a general statement, to be a proof, it must be generalisable. A proof without words is not the same as a mathematical proof, because it omits the details of the logical argument it illustrates. However, it can provide valuable intuitions to the viewer that can help them formulate or better understand a true proof. Examples Sum of odd numbers The statement that the sum of all positive odd numbers up to 2''n'' − 1 is a perfect square—more specifically, the perfect square ''n''2—can be demonstrated by a proof without words. In one corner of a grid, a single block represen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mirroring Operator
Mirroring is the behavior in which one person subconsciously imitates the gesture, speech pattern, or attitude of another. Mirroring often occurs in social situations, particularly in the company of close friends or family, often going unnoticed by both parties.The concept often affects other individuals' notions about the individual that is exhibiting mirroring behaviors, which can lead to the individual building rapport with others. Mirroring is distinct from conscious imitation under the premise that while the latter is a conscious, typically overt effort to copy another person, mirroring is unconsciously done during the act and often goes unnoticed. It has also been described as the ''chameleon effect''. The display of mirroring often begins as early as infancy, as babies begin to mimic individuals around them and establish connections with particular body movements. The ability to mimic another person's actions allows the infant to establish a sense of empathy and thus begi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ternary Expansion
A ternary numeral system (also called base 3 or trinary) has three as its base. Analogous to a bit, a ternary digit is a trit (trinary digit). One trit is equivalent to log2 3 (about 1.58496) bits of information. Although ''ternary'' most often refers to a system in which the three digits are all non–negative numbers; specifically , , and , the adjective also lends its name to the balanced ternary system; comprising the digits −1, 0 and +1, used in comparison logic and ternary computers. Comparison to other bases Representations of integer numbers in ternary do not get uncomfortably lengthy as quickly as in binary. For example, decimal 365 or senary 1405 corresponds to binary 101101101 (nine digits) and to ternary 111112 (six digits). However, they are still far less compact than the corresponding representations in bases such as decimalsee below for a compact way to codify ternary using nonary (base 9) and septemvigesimal (base 27). As for rational numbers, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Piecewise
In mathematics, a piecewise-defined function (also called a piecewise function, a hybrid function, or definition by cases) is a function defined by multiple sub-functions, where each sub-function applies to a different interval in the domain. Piecewise definition is actually a way of expressing the function, rather than a characteristic of the function itself. A distinct, but related notion is that of a property holding piecewise for a function, used when the domain can be divided into intervals on which the property holds. Unlike for the notion above, this is actually a property of the function itself. A piecewise linear function (which happens to be also continuous) is depicted as an example. Notation and interpretation Piecewise functions can be defined using the common functional notation, where the body of the function is an array of functions and associated subdomains. These subdomains together must cover the whole domain; often it is also required that they are pair ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
One-to-one Correspondence
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. In mathematical terms, a bijective function is a one-to-one (injective) and onto (surjective) mapping of a set ''X'' to a set ''Y''. The term ''one-to-one correspondence'' must not be confused with ''one-to-one function'' (an injective function; see figures). A bijection from the set ''X'' to the set ''Y'' has an inverse function from ''Y'' to ''X''. If ''X'' and ''Y'' are finite sets, then the existence of a bijection means they have the same number of elements. For infinite sets, the picture is more complicated, leading to the concept of cardinal number—a way to distinguish the various sizes of infinite sets. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |