Skew Line
In three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. Two lines that both lie in the same plane must either cross each other or be parallel, so skew lines can exist only in three or more dimensions. Two lines are skew if and only if they are not coplanar. General position If four points are chosen at random uniformly within a unit cube, they will almost surely define a pair of skew lines. After the first three points have been chosen, the fourth point will define a non-skew line if, and only if, it is coplanar with the first three points. However, the plane through the first three points forms a subset of measure zero of the cube, and the probability that the fourth point lies on this plane is zero. If it does not, the lines defined by the points will be skew. Similarly, in three-dimensional space a very small perturbati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rectangular Parallelepiped
In geometry, a cuboid is a hexahedron, a six-faced solid. Its faces are quadrilaterals. Cuboid means "like a cube", in the sense that by adjusting the length of the edges or the angles between edges and faces a cuboid can be transformed into a cube. In mathematical language a cuboid is a convex polyhedron, whose polyhedral graph is the same as that of a cube. Special cases are a cube, with 6 squares as faces, a rectangular prism, rectangular cuboid or rectangular box, with 6 rectangles as faces, for both, cube and rectangular prism, adjacent faces meet in a right angle. General cuboids By Euler's formula the numbers of faces ''F'', of vertices ''V'', and of edges ''E'' of any convex polyhedron are related by the formula ''F'' + ''V'' = ''E'' + 2. In the case of a cuboid this gives 6 + 8 = 12 + 2; that is, like a cube, a cuboid has 6 faces, 8 vertices, and 12 edges. Along with the rectangular cuboids, any parallelepiped ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unit Vector
In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in \hat (pronounced "v-hat"). The term ''direction vector'', commonly denoted as d, is used to describe a unit vector being used to represent spatial direction and relative direction. 2D spatial directions are numerically equivalent to points on the unit circle and spatial directions in 3D are equivalent to a point on the unit sphere. The normalized vector û of a non-zero vector u is the unit vector in the direction of u, i.e., :\mathbf = \frac where , u, is the norm (or length) of u. The term ''normalized vector'' is sometimes used as a synonym for ''unit vector''. Unit vectors are often chosen to form the basis of a vector space, and every vector in the space may be written as a linear combination of unit vectors. Orthogonal coordinates Cartesian coordinates Unit vectors may be us ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Petersen–Morley Theorem
In geometry, the Petersen–Morley theorem states that, if , , are three general skew lines in space, if , , are the lines of shortest distance respectively for the pairs , and , and if , and are the lines of shortest distance respectively for the pairs , and , then there is a single line meeting at right angles all of , , and . The theorem is named after Johannes Hjelmslev (who published his work on this result under his original name Johannes Trolle Petersen) and Frank Morley Frank Morley (September 9, 1860 – October 17, 1937) was a leading mathematician, known mostly for his teaching and research in the fields of algebra and geometry. Among his mathematical accomplishments was the discovery and proof of the celebr .... References * * * {{DEFAULTSORT:Petersen-Morley theorem Mathematical theorems Theorems in geometry ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Distance Between Two Parallel Lines
The distance between two parallel lines in the plane is the minimum distance between any two points. Formula and proof Because the lines are parallel, the perpendicular distance between them is a constant, so it does not matter which point is chosen to measure the distance. Given the equations of two non-vertical parallel lines :y = mx+b_1\, :y = mx+b_2\,, the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular line :y = -x/m \, . This distance can be found by first solving the linear systems :\begin y = mx+b_1 \\ y = -x/m \, , \end and :\begin y = mx+b_2 \\ y = -x/m \, , \end to get the coordinates of the intersection points. The solutions to the linear systems are the points :\left( x_1,y_1 \right)\ = \left( \frac,\frac \right)\, , and :\left( x_2,y_2 \right)\ = \left( \frac,\frac \right)\, . The distance between the points is :d = \sqrt\,, which reduces to :d = \frac\,. When the lines are give ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Projective Geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points (called "points at infinity") to Euclidean points, and vice-versa. Properties meaningful for projective geometry are respected by this new idea of transformation, which is more radical in its effects than can be expressed by a transformation matrix and translations (the affine transformations). The first issue for geometers is what kind of geometry is adequate for a novel situation. It is not possible to refer to angles in projective geometry as it is in Euclidean geometry, because angle is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Affine Geometry
In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle. As the notion of ''parallel lines'' is one of the main properties that is independent of any metric, affine geometry is often considered as the study of parallel lines. Therefore, Playfair's axiom (Given a line L and a point P not on L, there is exactly one line parallel to L that passes through P.) is fundamental in affine geometry. Comparisons of figures in affine geometry are made with affine transformations, which are mappings that preserve alignment of points and parallelism of lines. Affine geometry can be developed in two ways that are essentially equivalent. In synthetic geometry, an affine space is a set of ''points'' to which is associated a set of lines, which satisfy some axioms (such as Playfair's axiom). Affine geometry can also be developed on the basis of linear algebra. In this context an affine s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Flat (geometry)
In geometry, a flat or Euclidean subspace is a subset of a Euclidean space that is itself a Euclidean space (of lower dimension). The flats in two-dimensional space are points and lines, and the flats in three-dimensional space are points, lines, and planes. In a -dimensional space, there are flats of every dimension from 0 to ; flats of dimension are called ''hyperplanes''. Flats are the affine subspaces of Euclidean spaces, which means that they are similar to linear subspaces, except that they need not pass through the origin. Flats occur in linear algebra, as geometric realizations of solution sets of systems of linear equations. A flat is a manifold and an algebraic variety, and is sometimes called a ''linear manifold'' or ''linear variety'' to distinguish it from other manifolds or varieties. Descriptions By equations A flat can be described by a system of linear equations. For example, a line in two-dimensional space can be described by a single linear equation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbolic Paraboloid
In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry. Every plane section of a paraboloid by a plane parallel to the axis of symmetry is a parabola. The paraboloid is hyperbolic if every other plane section is either a hyperbola, or two crossing lines (in the case of a section by a tangent plane). The paraboloid is elliptic if every other nonempty plane section is either an ellipse, or a single point (in the case of a section by a tangent plane). A paraboloid is either elliptic or hyperbolic. Equivalently, a paraboloid may be defined as a quadric surface that is not a cylinder, and has an implicit equation whose part of degree two may be factored over the complex numbers into two different linear factors. The paraboloid is hyperbolic if the factors are real; elliptic if the factors are complex conjugate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Affine Transformation
In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments. Consequently, sets of parallel affine subspaces remain parallel after an affine transformation. An affine transformation does not necessarily preserve angles between lines or distances between points, though it does preserve ratios of distances between points lying on a straight line. If is the point set of an affine space, then every affine transformation on can be repre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ruled Surface
In geometry, a surface is ruled (also called a scroll) if through every point of there is a straight line that lies on . Examples include the plane, the lateral surface of a cylinder or cone, a conical surface with elliptical directrix, the right conoid, the helicoid, and the tangent developable of a smooth curve in space. A ruled surface can be described as the set of points swept by a moving straight line. For example, a cone is formed by keeping one point of a line fixed whilst moving another point along a circle. A surface is ''doubly ruled'' if through every one of its points there are two distinct lines that lie on the surface. The hyperbolic paraboloid and the hyperboloid of one sheet are doubly ruled surfaces. The plane is the only surface which contains at least three distinct lines through each of its points . The properties of being ruled or doubly ruled are preserved by projective maps, and therefore are concepts of projective geometry. In algebraic geometry, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regulus (geometry)
In three-dimensional space, a regulus ''R'' is a set of skew lines, every point of which is on a transversal which intersects an element of ''R'' only once, and such that every point on a transversal lies on a line of ''R'' The set of transversals of ''R'' forms an opposite regulus ''S''. In ℝ3 the union ''R'' ∪ ''S'' is the ruled surface of a hyperboloid of one sheet. Three skew lines determine a regulus: :The locus of lines meeting three given skew lines is called a ''regulus''. Gallucci's theorem shows that the lines meeting the generators of the regulus (including the original three lines) form another "associated" regulus, such that every generator of either regulus meets every generator of the other. The two reguli are the two systems of generators of a ''ruled quadric''. According to Charlotte Scott, "The regulus supplies extremely simple proofs of the properties of a conic...the theorems of Chasles, Brianchon, and Pascal ..." In a finite geometry PG(3, ''q''), ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperboloid Of One Sheet
In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation. A hyperboloid is a quadric surface, that is, a surface defined as the zero set of a polynomial of degree two in three variables. Among quadric surfaces, a hyperboloid is characterized by not being a cone or a cylinder, having a center of symmetry, and intersecting many planes into hyperbolas. A hyperboloid has three pairwise perpendicular axes of symmetry, and three pairwise perpendicular planes of symmetry. Given a hyperboloid, one can choose a Cartesian coordinate system such that the hyperboloid is defined by one of the following equations: : + - = 1, or : + - = -1. The coordinate axes are axes of symmetry of the hyperboloid and the ori ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |