HOME
*



picture info

Simple Object
This is a glossary of properties and concepts in category theory in mathematics. (see also Outline of category theory.) *Notes on foundations: In many expositions (e.g., Vistoli), the set-theoretic issues are ignored; this means, for instance, that one does not distinguish between small and large categories and that one can arbitrarily form a localization of a category.If one believes in the existence of strongly inaccessible cardinals, then there can be a rigorous theory where statements and constructions have references to Grothendieck universes. Like those expositions, this glossary also generally ignores the set-theoretic issues, except when they are relevant (e.g., the discussion on accessibility.) Especially for higher categories, the concepts from algebraic topology are also used in the category theory. For that see also glossary of algebraic topology. The notations and the conventions used throughout the article are: * 'n''= , which is viewed as a category (by writing i \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Accessible Category
The theory of accessible categories is a part of mathematics, specifically of category theory. It attempts to describe categories in terms of the "size" (a cardinal number) of the operations needed to generate their objects. The theory originates in the work of Grothendieck completed by 1969, and Gabriel and Ulmer (1971). It has been further developed in 1989 by Michael Makkai and Robert Paré, with motivation coming from model theory, a branch of mathematical logic. A standard text book by Adámek and Rosický appeared in 1994. Accessible categories also have applications in homotopy theory.J. Rosick"On combinatorial model categories" ''arXiv'', 16 August 2007. Retrieved on 19 January 2008.Rosický, J. "Injectivity and accessible categories." ''Cubo Matem. Educ'' 4 (2002): 201-211. Grothendieck continued the development of the theory for homotopy-theoretic purposes in his (still partly unpublished) 1991 manuscript ''Les dérivateurs''. Some properties of accessible categories dep ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bousfield Localization
In category theory, a branch of mathematics, a (left) Bousfield localization of a model category replaces the model structure with another model structure with the same cofibrations but with more weak equivalences. Bousfield localization is named after Aldridge Bousfield, who first introduced this technique in the context of localization of topological spaces and spectra. Model category structure of the Bousfield localization Given a class ''C'' of morphisms in a model category ''M'' the left Bousfield localization is a new model structure on the same category as before. Its equivalences, cofibrations and fibrations, respectively, are * the ''C''-local equivalences * the original cofibrations of ''M'' and (necessarily, since cofibrations and weak equivalences determine the fibrations) * the maps having the right lifting property with respect to the cofibrations in ''M'' which are also ''C''-local equivalences. In this definition, a ''C''-local equivalence is a map f\colon X \to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bimorphism
In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in topology, continuous functions, and so on. In category theory, ''morphism'' is a broadly similar idea: the mathematical objects involved need not be sets, and the relationships between them may be something other than maps, although the morphisms between the objects of a given category have to behave similarly to maps in that they have to admit an associative operation similar to function composition. A morphism in category theory is an abstraction of a homomorphism. The study of morphisms and of the structures (called "objects") over which they are defined is central to category theory. Much of the terminology of morphisms, as well as the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rig Category
In category theory, a rig category (also known as bimonoidal category or 2-rig) is a category equipped with two monoidal structures, one distributing over the other. Definition A rig category is given by a category \mathbf C equipped with: * a symmetric monoidal structure (\mathbf C, \oplus, O) * a monoidal structure (\mathbf C, \otimes, I) * distributing natural isomorphisms: \delta_ : A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A \otimes C) and \delta'_ : (A \oplus B) \otimes C \simeq (A \otimes C) \oplus (B \otimes C) * annihilating (or ''absorbing'') natural isomorphisms: a_A : O \otimes A \simeq O and a'_A : A \otimes O \simeq O Those structures are required to satisfy a number of coherence conditions. Examples * Set, the category of sets with the disjoint union as \oplus and the cartesian product as \otimes. Such categories where the multiplicative monoidal structure is the categorical product and the additive monoidal structure is the coproduct are called dis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bifunctor
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a linguistic context; see function word. Definition Let ''C'' and ''D'' be categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each object X in ''C'' to an object F(X) in ''D'', * associates each morphism f \colon X \to Y in ''C'' to a morphism F(f) \colon F(X) \to F(Y) in ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




2-category
In category theory, a strict 2-category is a category with "morphisms between morphisms", that is, where each hom-set itself carries the structure of a category. It can be formally defined as a category enriched over Cat (the category of categories and functors, with the monoidal structure given by product of categories). The concept of 2-category was first introduced by Charles Ehresmann in his work on enriched categories in 1965. The more general concept of bicategory (or ''weak'' 2-''category''), where composition of morphisms is associative only up to a 2-isomorphism, was introduced in 1968 by Jean Bénabou.Jean Bénabou, Introduction to bicategories, in Reports of the Midwest Category Seminar, Springer, Berlin, 1967, pp. 1--77. Definition A 2-category C consists of: * A class of 0-''cells'' (or ''objects'') , , .... * For all objects and , a category \mathbf(A,B). The objects f,g: A \to B of this category are called 1-''cells'' and its morphisms \alpha: f \Ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bicategory
In mathematics, a bicategory (or a weak 2-category) is a concept in category theory used to extend the notion of category to handle the cases where the composition of morphisms is not (strictly) associative, but only associative ''up to'' an isomorphism. The notion was introduced in 1967 by Jean Bénabou. Bicategories may be considered as a weakening of the definition of 2-categories. A similar process for 3-categories leads to tricategories, and more generally to weak ''n''-categories for ''n''-categories. Definition Formally, a bicategory B consists of: * objects ''a'', ''b'', ... called 0-''cells''; * morphisms ''f'', ''g'', ... with fixed source and target objects called 1-''cells''; * "morphisms between morphisms" ρ, σ, ... with fixed source and target morphisms (which should have themselves the same source and the same target), called 2-''cells''; with some more structure: * given two objects ''a'' and ''b'' there is a category B(''a'', ''b'') whose objects are the 1- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beck's Monadicity Theorem
In category theory, a branch of mathematics, Beck's monadicity theorem gives a criterion that characterises monadic functors, introduced by in about 1964. It is often stated in dual form for comonads. It is sometimes called the Beck tripleability theorem because of the older term ''triple'' for a monad. Beck's monadicity theorem asserts that a functor :U: C \to D is monadic if and only if # ''U'' has a left adjoint; # ''U'' reflects isomorphisms (if ''U''(''f'') is an isomorphism then so is ''f''); and # ''C'' has coequalizers of ''U''-split parallel pairs (those parallel pairs of morphisms in ''C'', which ''U'' sends to pairs having a split coequalizer in ''D''), and ''U'' preserves those coequalizers. There are several variations of Beck's theorem: if ''U'' has a left adjoint then any of the following conditions ensure that ''U'' is monadic: *''U'' reflects isomorphisms and ''C'' has coequalizers of reflexive pairs (those with a common right inverse) and ''U'' preserves ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action (mathematics)
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monoid Action
In algebra and theoretical computer science, an action or act of a semigroup on a set is a rule which associates to each element of the semigroup a transformation of the set in such a way that the product of two elements of the semigroup (using the semigroup operation) is associated with the composite of the two corresponding transformations. The terminology conveys the idea that the elements of the semigroup are ''acting'' as transformations of the set. From an algebraic perspective, a semigroup action is a generalization of the notion of a group action in group theory. From the computer science point of view, semigroup actions are closely related to automata: the set models the state of the automaton and the action models transformations of that state in response to inputs. An important special case is a monoid action or act, in which the semigroup is a monoid and the identity element of the monoid acts as the identity transformation of a set. From a category theoret ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Algebra For A Monad
In category theory, a branch of mathematics, a monad (also triple, triad, standard construction and fundamental construction) is a monoid in the category of endofunctors. An endofunctor is a functor mapping a category to itself, and a monad is an endofunctor together with two natural transformations required to fulfill certain coherence conditions. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories. Monads are also useful in the theory of datatypes and in functional programming languages, allowing languages with non-mutable states to do things such as simulate for-loops; see Monad (functional programming). Introduction and definition A monad is a certain type of endofunctor. For example, if F and G are a pair of adjoint functors, with F left adjoint to G, then the composition G \circ F is a monad. If F and G are inverse functors, the corresponding monad is the identity functor. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]