Similar Matrix
In linear algebra, two ''n''-by-''n'' matrices and are called similar if there exists an invertible ''n''-by-''n'' matrix such that B = P^ A P . Similar matrices represent the same linear map under two (possibly) different bases, with being the change of basis matrix. A transformation is called a similarity transformation or conjugation of the matrix . In the general linear group, similarity is therefore the same as conjugacy, and similar matrices are also called conjugate; however, in a given subgroup of the general linear group, the notion of conjugacy may be more restrictive than similarity, since it requires that be chosen to lie in . Motivating example When defining a linear transformation, it can be the case that a change of basis can result in a simpler form of the same transformation. For example, the matrix representing a rotation in when the axis of rotation is not aligned with the coordinate axis can be complicated to compute. If the axis of rotation were ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions. Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the linear ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minimal Polynomial (linear Algebra)
In linear algebra, the minimal polynomial of an matrix over a field is the monic polynomial over of least degree such that . Any other polynomial with is a (polynomial) multiple of . The following three statements are equivalent: # is a root of , # is a root of the characteristic polynomial of , # is an eigenvalue of matrix . The multiplicity of a root of is the largest power such that ''strictly'' contains . In other words, increasing the exponent up to will give ever larger kernels, but further increasing the exponent beyond will just give the same kernel. If the field is not algebraically closed, then the minimal and characteristic polynomials need not factor according to their roots (in ) alone, in other words they may have irreducible polynomial factors of degree greater than . For irreducible polynomials one has similar equivalences: # divides , # divides , # the kernel of has dimension at least . # the kernel of has dimension at least . Like the c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Smith Normal Form
In mathematics, the Smith normal form (sometimes abbreviated SNF) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square matrices. In particular, the integers are a PID, so one can always calculate the Smith normal form of an integer matrix. The Smith normal form is very useful for working with finitely generated modules over a PID, and in particular for deducing the structure of a quotient of a free module. It is named after the Irish mathematician Henry John Stephen Smith. Definition Let ''A'' be a nonzero ''m''×''n'' matrix over a principal ideal domain ''R''. There exist invertible m \times m and n \times n-matrices ''S, T'' (with coefficients in ''R'') such that the product ''S A T'' is \begin \alpha_1 & 0 & 0 & & \cdots & & 0 \\ 0 & \alpha_2 & 0 & ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rational Canonical Form
In linear algebra, the Frobenius normal form or rational canonical form of a square matrix ''A'' with entries in a field ''F'' is a canonical form for matrices obtained by conjugation by invertible matrices over ''F''. The form reflects a minimal decomposition of the vector space into subspaces that are cyclic for ''A'' (i.e., spanned by some vector and its repeated images under ''A''). Since only one normal form can be reached from a given matrix (whence the "canonical"), a matrix ''B'' is similar to ''A'' if and only if it has the same rational canonical form as ''A''. Since this form can be found without any operations that might change when extending the field ''F'' (whence the "rational"), notably without factoring polynomials, this shows that whether two matrices are similar does not change upon field extensions. The form is named after German mathematician Ferdinand Georg Frobenius. Some authors use the term rational canonical form for a somewhat different form that is mor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canonical Form
In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and which allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a ''unique'' representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness. The canonical form of a positive integer in decimal representation is a finite sequence of digits that does not begin with zero. More generally, for a class of objects on which an equivalence relation is defined, a canonical form consists in the choice of a specific object in each class. For example: *Jordan normal form is a canonical form for matrix similarity. *The row echelon form is a canonical form, when one considers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jordan Form
In linear algebra, a Jordan normal form, also known as a Jordan canonical form (JCF), is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to some basis. Such a matrix has each non-zero off-diagonal entry equal to 1, immediately above the main diagonal (on the superdiagonal), and with identical diagonal entries to the left and below them. Let ''V'' be a vector space over a field ''K''. Then a basis with respect to which the matrix has the required form exists if and only if all eigenvalues of the matrix lie in ''K'', or equivalently if the characteristic polynomial of the operator splits into linear factors over ''K''. This condition is always satisfied if ''K'' is algebraically closed (for instance, if it is the field of complex numbers). The diagonal entries of the normal form are the eigenvalues (of the operator), and the number of times each eigenvalue occurs is called ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraically Closed Field
In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because the polynomial equation ''x''2 + 1 = 0 has no solution in real numbers, even though all its coefficients (1 and 0) are real. The same argument proves that no subfield of the real field is algebraically closed; in particular, the field of rational numbers is not algebraically closed. Also, no finite field ''F'' is algebraically closed, because if ''a''1, ''a''2, ..., ''an'' are the elements of ''F'', then the polynomial (''x'' − ''a''1)(''x'' − ''a''2) ⋯ (''x'' − ''a''''n'') + 1 has no zero in ''F''. By contrast, the fundamental theorem of algebra states that the field of complex numbers is algebraically closed. Another example of an algebraicall ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diagonal Matrix
In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal matrix is \left begin 3 & 0 \\ 0 & 2 \end\right/math>, while an example of a 3×3 diagonal matrix is \left begin 6 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end\right/math>. An identity matrix of any size, or any multiple of it (a scalar matrix), is a diagonal matrix. A diagonal matrix is sometimes called a scaling matrix, since matrix multiplication with it results in changing scale (size). Its determinant is the product of its diagonal values. Definition As stated above, a diagonal matrix is a matrix in which all off-diagonal entries are zero. That is, the matrix with ''n'' columns and ''n'' rows is diagonal if \forall i,j \in \, i \ne j \implies d_ = 0. However, the main diagonal entries are unrestricted. The term ''diagonal matrix'' may s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diagonalizable Matrix
In linear algebra, a square matrix A is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P and a diagonal matrix D such that or equivalently (Such D are not unique.) For a finite-dimensional vector space a linear map T:V\to V is called diagonalizable if there exists an ordered basis of V consisting of eigenvectors of T. These definitions are equivalent: if T has a matrix representation T = PDP^ as above, then the column vectors of P form a basis consisting of eigenvectors of and the diagonal entries of D are the corresponding eigenvalues of with respect to this eigenvector basis, A is represented by Diagonalization is the process of finding the above P and Diagonalizable matrices and maps are especially easy for computations, once their eigenvalues and eigenvectors are known. One can raise a diagonal matrix D to a power by simply raising the diagonal entries to that power, and the determi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Principal Ideal Domain
In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors (e.g., Bourbaki) refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot. Principal ideal domains are thus mathematical objects that behave somewhat like the integers, with respect to divisibility: any element of a PID has a unique decomposition into prime elements (so an analogue of the fundamental theorem of arithmetic holds); any two elements of a PID have a greatest common divisor (although it may not be possible to find it using the Euclidean algorithm). If and are elements of a PID without common divisors, then every element of the PID can be written in the form . Principal ideal domains are noetherian, they are integra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elementary Divisors
In algebra, the elementary divisors of a module over a principal ideal domain (PID) occur in one form of the structure theorem for finitely generated modules over a principal ideal domain. If R is a PID and M a finitely generated R-module, then ''M'' is isomorphic to a finite sum of the form ::M\cong R^r\oplus \bigoplus_^l R/(q_i) \qquad\textr,l\geq0 :where the (q_i) are nonzero primary ideals. The list of primary ideals is unique up to order (but a given ideal may be present more than once, so the list represents a multiset of primary ideals); the elements q_i are unique only up to associatedness, and are called the ''elementary divisors''. Note that in a PID, the nonzero primary ideals are powers of prime ideals, so the elementary divisors can be written as powers q_i=p_i^ of irreducible elements. The nonnegative integer r is called the ''free rank'' or ''Betti number'' of the module M. The module is determined up to isomorphism by specifying its free rank , and for class of a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |