HOME





Sieve Theory
Sieve theory is a set of general techniques in number theory, designed to count, or more realistically to estimate the size of, sifted sets of integers. The prototypical example of a sifted set is the set of prime numbers up to some prescribed limit ''X''. Correspondingly, the prototypical example of a sieve is the sieve of Eratosthenes, or the more general Legendre sieve. The direct attack on prime numbers using these methods soon reaches apparently insuperable obstacles, in the way of the accumulation of error terms. In one of the major strands of number theory in the twentieth century, ways were found of avoiding some of the difficulties of a frontal attack with a naive idea of what sieving should be. One successful approach is to approximate a specific sifted set of numbers (e.g. the set of prime numbers) by another, simpler set (e.g. the set of almost prime numbers), which is typically somewhat larger than the original set, and easier to analyze. More sophisticated sieves a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinality
The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thumb is ''pollex'' (compare ''hallux'' for big toe), and the corresponding adjective for thumb is ''pollical''. Definition Thumb and fingers The English word ''finger'' has two senses, even in the context of appendages of a single typical human hand: 1) Any of the five terminal members of the hand. 2) Any of the four terminal members of the hand, other than the thumb. Linguistically, it appears that the original sense was the first of these two: (also rendered as ) was, in the inferred Proto-Indo-European language, a suffixed form of (or ), which has given rise to many Indo-European-family words (tens of them defined in English dictionaries) that involve, or stem from, concepts of fiveness. The thumb shares the following with each of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Goldston–Pintz–Yıldırım Sieve
The Goldston–Pintz–Yıldırım sieve (also called GPY sieve or GPY method) is a sieve method and variant of the Selberg sieve with generalized, multidimensional sieve weights. The sieve led to a series of important breakthroughs in analytic number theory. It is named after the mathematicians Dan Goldston, János Pintz and Cem Yıldırım. They used it in 2005 to show that there are infinitely many prime tuples whose distances are arbitrarily smaller than the average distance that follows from the prime number theorem. The sieve was then modified by Yitang Zhang in order to prove a finite bound on the smallest gap between two consecutive primes that is attained infinitely often. Later the sieve was again modified by James Maynard (who lowered the bound to 600) and by Terence Tao. Goldston–Pintz–Yıldırım sieve Notation Fix a k\in \N and the following notation: *\mathbb is the set of prime numbers and 1_(n) the characteristic function of that set, *\Lambda(n) is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Larger Sieve
In number theory, the larger sieve is a sieve invented by Patrick X. Gallagher. The name denotes a heightening of the large sieve. Combinatorial sieves like the Selberg sieve In number theory, the Selberg sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Atle Selberg in the 1940s. Description In ... are strongest, when only a few residue classes are removed, while the term large sieve means that this sieve can take advantage of the removal of a large number of up to half of all residue classes. The larger sieve can exploit the deletion of an arbitrary number of classes. Statement Suppose that \mathcal is a set of prime powers, ''N'' an integer, \mathcal a set of integers in the interval , ''N'' such that for q\in \mathcal there are at most g(q) residue classes modulo q, which contain elements of \mathcal. Then we have :, \mathcal, \leq \frac, p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Large Sieve
The large sieve is a method (or family of methods and related ideas) in analytic number theory. It is a type of sieve where up to half of all residue classes of numbers are removed, as opposed to small sieves such as the Selberg sieve wherein only a few residue classes are removed. The method has been further heightened by the larger sieve which removes arbitrarily many residue classes. Name Its name comes from its original application: given a set S \subset \ such that the elements of ''S'' are forbidden to lie in a set ''Ap'' ⊂ Z/''p'' Z modulo every prime ''p'', how large can ''S'' be? Here ''A''''p'' is thought of as being large, i.e., at least as large as a constant times ''p''; if this is not the case, we speak of a ''small sieve''. History The early history of the large sieve traces back to work of Yu. B. Linnik, in 1941, working on the problem of the least quadratic non-residue. Subsequently Alfréd Rényi worked on it, using probability methods. It was only two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Turán Sieve
In number theory, the Turán sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Pál Turán in 1934. Description In terms of sieve theory the Turán sieve is of ''combinatorial type'': deriving from a rudimentary form of the inclusion–exclusion principle. The result gives an ''upper bound'' for the size of the sifted set. Let ''A'' be a set of positive integers ≤ ''x'' and let ''P'' be a set of primes. For each ''p'' in ''P'', let ''A''''p'' denote the set of elements of ''A'' divisible by ''p'' and extend this to let ''A''''d'' be the intersection of the ''A''''p'' for ''p'' dividing ''d'', when ''d'' is a product of distinct primes from ''P''. Further let ''A''1 denote ''A'' itself. Let ''z'' be a positive real number and ''P''(''z'') denote the product of the primes in ''P'' which are ≤ ''z''. The object of the sieve is to estimate :S(A,P,z) = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Selberg Sieve
In number theory, the Selberg sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Atle Selberg in the 1940s. Description In terms of sieve theory the Selberg sieve is of ''combinatorial type'': that is, derives from a careful use of the inclusion–exclusion principle. Selberg replaced the values of the Möbius function which arise in this by a system of weights which are then optimised to fit the given problem. The result gives an ''upper bound'' for the size of the sifted set. Let A be a set of positive integers \le x and let P be a set of primes. Let A_d denote the set of elements of A divisible by d when d is a product of distinct primes from P. Further let A_1 denote A itself. Let z be a positive real number and P(z) denote the product of the primes in P which are \le z. The object of the sieve is to estimate :S(A,P,z) = \left\vert A \setminus \big ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brun Sieve
In the field of number theory, the Brun sieve (also called Brun's pure sieve) is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Viggo Brun in 1915 and later generalized to the fundamental lemma of sieve theory by others. Description In terms of sieve theory the Brun sieve is of ''combinatorial type''; that is, it derives from a careful use of the inclusion–exclusion principle. Let A be a finite set of positive integers. Let P be some set of prime numbers. For each prime p in P, let A_p denote the set of elements of A that are divisible by p. This notation can be extended to other integers d that are products of distinct primes in P. In this case, define A_d to be the intersection of the sets A_p for the prime factors p of d. Finally, define A_1 to be A itself. Let z be an arbitrary positive real number. The object of the sieve is to estimate: S(A,P,z) = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Greatest Common Divisor
In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers , , the greatest common divisor of and is denoted \gcd (x,y). For example, the GCD of 8 and 12 is 4, that is, . In the name "greatest common divisor", the adjective "greatest" may be replaced by "highest", and the word "divisor" may be replaced by "factor", so that other names include highest common factor, etc. Historically, other names for the same concept have included greatest common measure. This notion can be extended to polynomials (see ''Polynomial greatest common divisor'') and other commutative rings (see ' below). Overview Definition The ''greatest common divisor'' (GCD) of integers and , at least one of which is nonzero, is the greatest positive integer such that is a divisor of both and ; that is, there are integers and such that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Upper And Lower Bounds
In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is every element of . Dually, a lower bound or minorant of is defined to be an element of that is less than or equal to every element of . A set with an upper (respectively, lower) bound is said to be bounded from above or majorized (respectively bounded from below or minorized) by that bound. The terms bounded above (bounded below) are also used in the mathematical literature for sets that have upper (respectively lower) bounds. Examples For example, is a lower bound for the set (as a subset of the integers or of the real numbers, etc.), and so is . On the other hand, is not a lower bound for since it is not smaller than every element in . and other numbers ''x'' such that would be an upper bound for ''S''. The set has as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiplicative Function
In number theory, a multiplicative function is an arithmetic function f of a positive integer n with the property that f(1)=1 and f(ab) = f(a)f(b) whenever a and b are coprime. An arithmetic function is said to be completely multiplicative (or totally multiplicative) if f(1)=1 and f(ab) = f(a)f(b) holds ''for all'' positive integers a and b, even when they are not coprime. Examples Some multiplicative functions are defined to make formulas easier to write: * 1(n): the constant function defined by 1(n)=1 * \operatorname(n): the identity function, defined by \operatorname(n)=n * \operatorname_k(n): the power functions, defined by \operatorname_k(n)=n^k for any complex number k. As special cases we have ** \operatorname_0(n)=1(n), and ** \operatorname_1(n)=\operatorname(n). * \varepsilon(n): the function defined by \varepsilon(n)=1 if n=1 and 0 otherwise; this is the unit function, so called because it is the multiplicative identity for Dirichlet convolution. Sometimes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Möbius Function
The Möbius function \mu(n) is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated ''Moebius'') in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted \mu(x). Definition The Möbius function is defined by :\mu(n) = \begin 1 & \text n = 1 \\ (-1)^k & \text n \text k \text \\ 0 & \text n \text > 1 \end The Möbius function can alternatively be represented as : \mu(n) = \delta_ \lambda(n), where \delta_ is the Kronecker delta, \lambda(n) is the Liouville function, Prime omega function, \omega(n) is the number of distinct prime divisors of n, and Prime omega function, \Omega(n) is the number of prime factors of n, counted with multiplicity. Another characterization ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]