Shape Resonance
   HOME
*





Shape Resonance
A shape resonance is a metastable state in which an electron is trapped due to the shape of a potential barrier. Altunata describes a state as being a shape resonance if, "the internal state of the system remains unchanged upon disintegration of the quasi-bound level." A more general discussion of resonances and their taxonomies in molecular system can be found in the review article by Schulz,; for the discovery of the Fano resonance line-shape and for the Majorana pioneering work in this field by Antonio Bianconi; and for a mathematical review by Combes et al. Quantum mechanics In quantum mechanics, a shape resonance, in contrast to a Feshbach resonance, is a resonance which is not turned into a bound state if the coupling between some degrees of freedom and the degrees of freedom associated to the fragmentation (reaction coordinates) are set to zero. More simply, the shape resonance total energy is more than the separated fragment energy. Practical implications of this differe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fano Resonance
In physics, a Fano resonance is a type of resonant scattering phenomenon that gives rise to an asymmetric line-shape. Interference between a background and a resonant scattering process produces the asymmetric line-shape. It is named after Italian-American physicist Ugo Fano, who in 1961 gave a theoretical explanation for the scattering line-shape of inelastic scattering of electrons from helium; however, Ettore Majorana was the first to discover this phenomenon. Because it is a general wave phenomenon, examples can be found across many areas of physics and engineering. History The explanation of the Fano line-shape first appeared in the context of inelastic electron scattering by helium and autoionization. The incident electron doubly excites the atom to the 2s2p state, a sort of shape resonance. The doubly excited atom spontaneously decays by ejecting one of the excited electrons. Fano showed that interference between the amplitude to simply scatter the incident electron and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Molecular Orbital
In chemistry, a molecular orbital is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding an electron in any specific region. The terms ''atomic orbital'' and ''molecular orbital'' were introduced by Robert S. Mulliken in 1932 to mean ''one-electron orbital wave functions''. At an elementary level, they are used to describe the ''region'' of space in which a function has a significant amplitude. In an isolated atom, the orbital electrons' location is determined by functions called atomic orbitals. When multiple atoms combine chemically into a molecule, the electrons' locations are determined by the molecule as a whole, so the atomic orbitals combine to form molecular orbitals. The electrons from the constituent atoms occupy the molecular orbitals. Mathematically, molecular orbitals are an approximate solution to the Schrödin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superstripes
Superstripes is a generic name for a phase with spatial broken symmetry that favors the onset of superconducting or superfluid quantum order. This scenario emerged in the 1990s when non-homogeneous metallic heterostructures at the atomic limit with a broken spatial symmetry have been found to favor superconductivity. Before a broken spatial symmetry was expected to compete and suppress the superconducting order. The driving mechanism for the amplification of the superconductivity critical temperature in superstripes matter has been proposed to be the shape resonance in the energy gap parameters ∆n that is a type of Fano resonance for coexisting condensates. The superstripes show multigap superconductivity near a 2.5 Lifshitz transition where the renormalization of chemical potential at the metal-to-superconductor transition is not negligeable and the self-consistent solution of the gaps equation is required. The superstripes lattice scenario is made of puddles of multigap super ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Victor Frederick Weisskopf
Victor Frederick "Viki" Weisskopf (also spelled Viktor; September 19, 1908 – April 22, 2002) was an Austrian-born American theoretical physicist. He did postdoctoral work with Werner Heisenberg, Erwin Schrödinger, Wolfgang Pauli, and Niels Bohr. During World War II he was Group Leader of the Theoretical Division of the Manhattan Project at Los Alamos, and he later campaigned against the proliferation of nuclear weapons. Biography Weisskopf was born in Vienna to Jewish parents and earned his doctorate in physics at the University of Göttingen in Germany in 1931. His brilliance in physics led to work with the great physicists exploring the atom, especially Niels Bohr, who mentored Weisskopf at his institute in Copenhagen. By the late 1930s, he realized that, as a Jew, he needed to get out of Europe. Bohr helped him find a position in the United States. In the 1930s and 1940s, "Viki", as everyone called him, made major contributions to the development of quantum theory, esp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ugo Fano
Ugo Fano (July 28, 1912 – February 13, 2001) was an Italian American physicist, notable for contributions to theoretical physics. Biography Ugo Fano was born into a wealthy Jewish family in Turin, Italy. His father was Gino Fano, a professor of mathematics. University studies Fano earned his doctorate in mathematics at the University of Turin in 1934, under Enrico Persico, with a thesis entitled ''Sul Calcolo dei Termini Spettrali e in Particolare dei Potenziali di Ionizzazione Nella Meccanica Quantistica'' (''On the Quantum Mechanical Calculation Spectral Terms and their Extension to Ionization''). As part of his PhD examination he also made two oral presentations entitled: ''Sulle Funzioni di Due o Più Variabili Complesse'' (''On the functions of two or more complex variables'') and ''Le Onde Elettromagnetiche di Maggi: Le Connessioni Asimmetriche Nella Geometria Non Riemanniana'' (''Maggi electromagnetic waves: asymmetric connections in non-Riemannian geometry''). E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gregor Wentzel
Gregor Wentzel (17 February 1898 – 12 August 1978) was a German physicist known for development of quantum mechanics. Wentzel, Hendrik Kramers, and Léon Brillouin developed the Wentzel–Kramers–Brillouin approximation in 1926. In his early years, he contributed to X-ray spectroscopy, but then broadened out to make contributions to quantum mechanics, quantum electrodynamics, and meson theory. Life and education Gregor Wentzel was born in Düsseldorf, Germany, as the first of four children of Joseph and Anna Wentzel. He married Anna "Anny" Pohlmann in 1929 and his only child, Donat Wentzel, was born in 1934. The family moved to the USA in 1948 until he and Anny returned to Ascona, Switzerland in 1970. Career Wentzel began his university education in mathematics and physics in 1916, at the University of Freiburg. During 1917 and 1918, he served in the armed forces during World War I. He then resumed his education at Freiburg until 1919, when he went to the University of G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Modern Quantum Mechanics
''Modern Quantum Mechanics'', often called ''Sakurai'' or ''Sakurai and Napolitano'', is a standard graduate-level quantum mechanics textbook written originally by J. J. Sakurai and edited by San Fu Tuan in 1985, with later editions coauthored by Jim Napolitano. Sakurai died in 1982 before he could finish the textbook and both the first edition of the book, published in 1985 by Benjamin Cummings, and the revised edition of 1994, published by Addison-Wesley, were edited and completed by Tuan posthumously. The book was updated by Napolitano and released two later editions. The second edition was initially published by Addison-Wesley in 2010 and rereleased as an eBook by Cambridge University Press, who released a third edition in 2020. Table of Contents (3rd edition) * Prefaces * Chapter 1: Fundamental Concepts * Chapter 2: Quantum Dynamics * Chapter 3: Theory of Angular Momentum * Chapter 4: Symmetry in Quantum Mechanics * Chapter 5: Approximation Methods * Chapter 6: Scattering ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Herman Feshbach
Herman Feshbach (February 2, 1917, in New York City – 22 December 2000, in Cambridge, Massachusetts) was an American physicist. He was an Institute Professor Emeritus of physics at MIT. Feshbach is best known for Feshbach resonance and for writing, with Philip M. Morse, ''Methods of Theoretical Physics''. Background Feshbach was born in New York City and graduated from the City College of New York in 1937. He was a member of the same family as Dr. Murray Feshbach, the Sovietologist and retired Georgetown University professor. He then went on to receive his Ph.D. in physics from MIT in 1942. Feshbach attended the Shelter Island Conference of 1947. Career Feshbach was invited to stay at MIT after he received his doctorate. He remained on the physics faculty for over fifty years. From 1967 to 1973, he was the director of MIT's Center for Theoretical Physics, and from 1973 to 1983, he was chairman of the physics department. In 1983, Feshbach was named as an Institute Pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Amos De-Shalit
Amos de-Shalit ( he, עמוס דה-שליט; September 29, 1926 – September 2, 1969Article entitled Amos de-Shalit (in Hebrew)
Davar newspaper, September 3, 1969
) was an Israeli and laureate.


Biography

Amos de-Shalit was born in in the

picture info

Electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum ( spin) of a half-integer value, expressed in units of the reduced Planck constant, . Being fermions, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: They can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atomic Orbital
In atomic theory and quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in any specific region around the atom's nucleus. The term ''atomic orbital'' may also refer to the physical region or space where the electron can be calculated to be present, as predicted by the particular mathematical form of the orbital. Each orbital in an atom is characterized by a set of values of the three quantum numbers , , and , which respectively correspond to the electron's energy, angular momentum, and an angular momentum vector component (magnetic quantum number). Alternative to the magnetic quantum number, the orbitals are often labeled by the associated harmonic polynomials (e.g., ''xy'', ). Each such orbital can be occupied by a maximum of two electrons, each with its own projection of spin m_s. The simple names s orbital, p orb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ettore Majorana
Ettore Majorana (,, uploaded 19 April 2013, retrieved 14 December 2019 ; born on 5 August 1906 – possibly dying after 1959) was an Italian theoretical physicist who worked on neutrino masses. On 25 March 1938, he disappeared under mysterious circumstances after purchasing a ticket to travel by ship from Palermo to Naples. The Majorana equation and Majorana fermions are named after him. In 2006, the Majorana Prize was established in his memory. Life and work In 1938, Enrico Fermi was quoted as saying about Majorana: "There are several categories of scientists in the world; those of second or third rank do their best but never get very far. Then there is the first rank, those who make important discoveries, fundamental to scientific progress. But then there are the geniuses, like Galilei and Newton. Majorana was one of these." Gifted in mathematics Majorana was born in Catania, Sicily. Mathematically gifted, he was very young when he joined Enrico Fermi's team in Rome a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]