Semiprime Ring
In ring theory, a branch of mathematics, semiprime ideals and semiprime rings are generalizations of prime ideals and prime rings. In commutative algebra, semiprime ideals are also called radical ideals and semiprime rings are the same as reduced rings. For example, in the ring of integers, the semiprime ideals are the zero ideal, along with those ideals of the form n\mathbb Z where ''n'' is a square-free integer. So, 30\mathbb Z is a semiprime ideal of the integers (because 30 = 2 × 3 × 5, with no repeated prime factors), but 12\mathbb Z\, is not (because 12 = 22 × 3, with a repeated prime factor). The class of semiprime rings includes semiprimitive rings, prime rings and reduced rings. Most definitions and assertions in this article appear in and . Definitions For a commutative ring ''R'', a proper ideal ''A'' is a semiprime ideal if ''A'' satisfies either of the following equivalent conditions: * If ''x''''k'' is in ''A'' for some positive integer ''k'' and element ''x'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
A Portion Of The Lattice Of Ideals Of Z Illustrating Prime, Semiprime And Primary Ideals SVG
A, or a, is the first letter and the first vowel of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''a'' (pronounced ), plural ''aes''. It is similar in shape to the Ancient Greek letter alpha, from which it derives. The uppercase version consists of the two slanting sides of a triangle, crossed in the middle by a horizontal bar. The lowercase version can be written in two forms: the double-storey a and single-storey ɑ. The latter is commonly used in handwriting and fonts based on it, especially fonts intended to be read by children, and is also found in italic type. In English grammar, "English articles, a", and its variant "English articles#Indefinite article, an", are Article (grammar)#Indefinite article, indefinite articles. History The earliest certain ancestor of "A" is aleph (also written 'aleph), the first letter of the Phoenician alphabet, which consiste ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radical Of An Ideal
In ring theory, a branch of mathematics, the radical of an ideal I of a commutative ring is another ideal defined by the property that an element x is in the radical if and only if some power of x is in I. Taking the radical of an ideal is called ''radicalization''. A radical ideal (or semiprime ideal) is an ideal that is equal to its radical. The radical of a primary ideal is a prime ideal. This concept is generalized to non-commutative rings in the Semiprime ring article. Definition The radical of an ideal I in a commutative ring R, denoted by \operatorname(I) or \sqrt, is defined as :\sqrt = \left\, (note that I \subset \sqrt). Intuitively, \sqrt is obtained by taking all roots of elements of I within the ring R. Equivalently, \sqrt is the preimage of the ideal of nilpotent elements (the nilradical) of the quotient ring R/I (via the natural map \pi\colon R\to R/I). The latter proves that \sqrt is an ideal.Here is a direct proof that \sqrt is an ideal. Start with a,b\in\sqrt ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stammbac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ore Condition
In mathematics, especially in the area of algebra known as ring theory, the Ore condition is a condition introduced by Øystein Ore, in connection with the question of extending beyond commutative rings the construction of a field of fractions, or more generally localization of a ring. The ''right Ore condition'' for a multiplicative subset ''S'' of a ring ''R'' is that for and , the intersection . A (non-commutative) domain for which the set of non-zero elements satisfies the right Ore condition is called a right Ore domain. The left case is defined similarly. General idea The goal is to construct the right ring of fractions ''R'' 'S''−1with respect to a multiplicative subset ''S''. In other words, we want to work with elements of the form ''as''−1 and have a ring structure on the set ''R'' 'S''−1 The problem is that there is no obvious interpretation of the product (''as''−1)(''bt''−1); indeed, we need a method to "move" ''s''−1 past ''b''. This means that we need t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Artinian Ring
In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are named after Emil Artin, who first discovered that the descending chain condition for ideals simultaneously generalizes finite rings and rings that are finite-dimensional vector spaces over fields. The definition of Artinian rings may be restated by interchanging the descending chain condition with an equivalent notion: the minimum condition. Precisely, a ring is left Artinian if it satisfies the descending chain condition on left ideals, right Artinian if it satisfies the descending chain condition on right ideals, and Artinian or two-sided Artinian if it is both left and right Artinian. For commutative rings the left and right definitions coincide, but in general they are distinct from each other. The Artin–Wedderburn theorem charact ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semisimple Module
In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself is known as an Artinian semisimple ring. Some important rings, such as group rings of finite groups over fields of characteristic zero, are semisimple rings. An Artinian ring is initially understood via its largest semisimple quotient. The structure of Artinian semisimple rings is well understood by the Artin–Wedderburn theorem, which exhibits these rings as finite direct products of matrix rings. For a group-theory analog of the same notion, see ''Semisimple representation''. Definition A module over a (not necessarily commutative) ring is said to be semisimple (or completely reducible) if it is the direct sum of simple (irreducible) submodules. For a module ''M'', the following are equivalent: # ''M'' is semisimple; i.e., a d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Goldie's Theorem
In mathematics, Goldie's theorem is a basic structural result in ring theory, proved by Alfred Goldie during the 1950s. What is now termed a right Goldie ring is a ring ''R'' that has finite uniform dimension (="finite rank") as a right module over itself, and satisfies the ascending chain condition on right annihilators of subsets of ''R''. Goldie's theorem states that the semiprime right Goldie rings are precisely those that have a semisimple Artinian right classical ring of quotients. The structure of this ring of quotients is then completely determined by the Artin–Wedderburn theorem. In particular, Goldie's theorem applies to semiprime right Noetherian rings, since by definition right Noetherian rings have the ascending chain condition on ''all'' right ideals. This is sufficient to guarantee that a right-Noetherian ring is right Goldie. The converse does not hold: every right Ore domain is a right Goldie domain, and hence so is every commutative integral domain. A con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Annihilator (ring Theory)
In mathematics, the annihilator of a subset of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by an element of . Over an integral domain, a module that has a nonzero annihilator is a torsion module, and a finitely generated torsion module has a nonzero annihilator. The above definition applies also in the case noncommutative rings, where the left annihilator of a left module is a left ideal, and the right-annihilator, of a right module is a right ideal. Definitions Let ''R'' be a ring, and let ''M'' be a left ''R''-module. Choose a non-empty subset ''S'' of ''M''. The annihilator of ''S'', denoted Ann''R''(''S''), is the set of all elements ''r'' in ''R'' such that, for all ''s'' in ''S'', . In set notation, :\mathrm_R(S)=\ It is the set of all elements of ''R'' that "annihilate" ''S'' (the elements for which ''S'' is a torsion set). Subsets of right modules may be used as well, after the modification of "" in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ascending Chain Condition
In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly ideals in certain commutative rings.Jacobson (2009), p. 142 and 147 These conditions played an important role in the development of the structure theory of commutative rings in the works of David Hilbert, Emmy Noether, and Emil Artin. The conditions themselves can be stated in an abstract form, so that they make sense for any partially ordered set. This point of view is useful in abstract algebraic dimension theory due to Gabriel and Rentschler. Definition A partially ordered set (poset) ''P'' is said to satisfy the ascending chain condition (ACC) if no infinite strictly ascending sequence :a_1 < a_2 < a_3 < \cdots of elements of ''P'' exists. Equivalently,Proof: first, a strictly increasing sequence cannot stabilize, obviously. Conversely, suppose there is a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniform Module
In abstract algebra, a module is called a uniform module if the intersection of any two nonzero submodules is nonzero. This is equivalent to saying that every nonzero submodule of ''M'' is an essential submodule. A ring may be called a right (left) uniform ring if it is uniform as a right (left) module over itself. Alfred Goldie used the notion of uniform modules to construct a measure of dimension for modules, now known as the uniform dimension (or Goldie dimension) of a module. Uniform dimension generalizes some, but not all, aspects of the notion of the dimension of a vector space. Finite uniform dimension was a key assumption for several theorems by Goldie, including Goldie's theorem, which characterizes which rings are right orders in a semisimple ring. Modules of finite uniform dimension generalize both Artinian modules and Noetherian modules. In the literature, uniform dimension is also referred to as simply the dimension of a module or the rank of a module. Uniform dim ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |