HOME
*



picture info

Semiorder
In order theory, a branch of mathematics, a semiorder is a type of ordering for items with numerical scores, where items with widely differing scores are compared by their scores and where scores within a given margin of error are deemed incomparable. Semiorders were introduced and applied in mathematical psychology by as a model of human preference. They generalize strict weak orderings, in which items with equal scores may be tied but there is no margin of error. They are a special case of partial orders and of interval orders, and can be characterized among the partial orders by additional axioms, or by two forbidden four-item suborders. Utility theory The original motivation for introducing semiorders was to model human preferences without assuming that incomparability is a transitive relation. For instance, suppose that x, y, and z represent three quantities of the same material, and that x is larger than z by the smallest amount that is perceptible as a difference, while y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Semiorder
In order theory, a branch of mathematics, a semiorder is a type of ordering for items with numerical scores, where items with widely differing scores are compared by their scores and where scores within a given margin of error are deemed incomparable. Semiorders were introduced and applied in mathematical psychology by as a model of human preference. They generalize strict weak orderings, in which items with equal scores may be tied but there is no margin of error. They are a special case of partial orders and of interval orders, and can be characterized among the partial orders by additional axioms, or by two forbidden four-item suborders. Utility theory The original motivation for introducing semiorders was to model human preferences without assuming that incomparability is a transitive relation. For instance, suppose that x, y, and z represent three quantities of the same material, and that x is larger than z by the smallest amount that is perceptible as a difference, while y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Strict Weak Ordering
In mathematics, especially order theory, a weak ordering is a mathematical formalization of the intuitive notion of a ranking of a set, some of whose members may be tied with each other. Weak orders are a generalization of totally ordered sets (rankings without ties) and are in turn generalized by partially ordered sets and preorders.. There are several common ways of formalizing weak orderings, that are different from each other but cryptomorphic (interconvertable with no loss of information): they may be axiomatized as strict weak orderings (partially ordered sets in which incomparability is a transitive relation), as total preorders (transitive binary relations in which at least one of the two possible relations exists between every pair of elements), or as ordered partitions (partitions of the elements into disjoint subsets, together with a total order on the subsets). In many cases another representation called a preferential arrangement based on a utility function is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Strict Weak Order
In mathematics, especially order theory, a weak ordering is a mathematical formalization of the intuitive notion of a ranking of a set, some of whose members may be tied with each other. Weak orders are a generalization of totally ordered sets (rankings without ties) and are in turn generalized by partially ordered sets and preorders.. There are several common ways of formalizing weak orderings, that are different from each other but cryptomorphic (interconvertable with no loss of information): they may be axiomatized as strict weak orderings (partially ordered sets in which incomparability is a transitive relation), as total preorders (transitive binary relations in which at least one of the two possible relations exists between every pair of elements), or as ordered partitions (partitions of the elements into disjoint subsets, together with a total order on the subsets). In many cases another representation called a preferential arrangement based on a utility function is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quasitransitive Relation
The mathematical notion of quasitransitivity is a weakened version of transitivity that is used in social choice theory and microeconomics. Informally, a relation is quasitransitive if it is symmetric for some values and transitive elsewhere. The concept was introduced by to study the consequences of Arrow's theorem. Formal definition A binary relation T over a set ''X'' is quasitransitive if for all ''a'', ''b'', and ''c'' in ''X'' the following holds: : (a\operatornameb) \wedge \neg(b\operatornamea) \wedge (b\operatornamec) \wedge \neg(c\operatornameb) \Rightarrow (a\operatornamec) \wedge \neg(c\operatornamea). If the relation is also antisymmetric, T is transitive. Alternately, for a relation T, define the asymmetric or "strict" part P: :(a\operatornameb) \Leftrightarrow (a\operatornameb) \wedge \neg(b\operatornamea). Then T is quasitransitive if and only if P is transitive. Examples Preferences are assumed to be quasitransitive (rather than transitive) in some econom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partially Ordered Set
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a Set (mathematics), set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of Comparability, comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Order
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', or ''x'' and ''y'' are ''incompar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1/3–2/3 Conjecture
In order theory, a branch of mathematics, the 1/3–2/3 conjecture states that, if one is comparison sorting a set of items then, no matter what comparisons may have already been performed, it is always possible to choose the next comparison in such a way that it will reduce the number of possible sorted orders by a factor of 2/3 or better. Equivalently, in every finite partially ordered set that is not totally ordered, there exists a pair of elements ''x'' and ''y'' with the property that at least 1/3 and at most 2/3 of the linear extensions of the partial order place ''x'' earlier than ''y''. Example The partial order formed by three elements ''a'', ''b'', and ''c'' with a single comparability relationship, has three linear extensions, and In all three of these extensions, ''a'' is earlier than ''b''. However, ''a'' is earlier than ''c'' in only two of them, and later than ''c'' in the third. Therefore, the pair of ''a'' and ''c'' have the desired property, showing that this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dean T
Dean may refer to: People * Dean (given name) * Dean (surname), a surname of Anglo-Saxon English origin * Dean (South Korean singer), a stage name for singer Kwon Hyuk * Dean Delannoit, a Belgian singer most known by the mononym Dean Titles * Dean (Christianity), persons in certain positions of authority within a religious hierarchy * Dean (education), persons in certain positions of authority in some educational establishments * Dean of the Diplomatic Corps, most senior ambassador in a country's diplomatic corps * Dean of the House, the most senior member of a country's legislature Places * Dean, Victoria, Australia * Dean, Nova Scotia, Canada * De'an County, Jiujiang, Jiangxi, China United Kingdom * Lower Dean, Bedfordshire, England * Upper Dean, Bedfordshire, England * Dean, Cumbria, England * Dean, Oxfordshire, England * Dean, a hamlet in Cranmore, Somerset, England * Dean Village, Midlothian, Scotland * Forest of Dean, Gloucestershire, England * Dene (valley) common topon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lawrence J
Lawrence may refer to: Education Colleges and universities * Lawrence Technological University, a university in Southfield, Michigan, United States * Lawrence University, a liberal arts university in Appleton, Wisconsin, United States Preparatory & high schools * Lawrence Academy at Groton, a preparatory school in Groton, Massachusetts, United States * Lawrence College, Ghora Gali, a high school in Pakistan * Lawrence School, Lovedale, a high school in India * The Lawrence School, Sanawar, a high school in India Research laboratories * Lawrence Berkeley National Laboratory, United States * Lawrence Livermore National Laboratory, United States People * Lawrence (given name), including a list of people with the name * Lawrence (surname), including a list of people with the name * Lawrence (band), an American soul-pop group * Lawrence (judge royal) (died after 1180), Hungarian nobleman, Judge royal 1164–1172 * Lawrence (musician), Lawrence Hayward (born 1961), British musician * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Extension
In order theory, a branch of mathematics, a linear extension of a partial order is a total order (or linear order) that is compatible with the partial order. As a classic example, the lexicographic order of totally ordered sets is a linear extension of their product order. Definitions Given any partial orders \,\leq\, and \,\leq^*\, on a set X, \,\leq^*\, is a linear extension of \,\leq\, exactly when (1) \,\leq^*\, is a total order and (2) for every x, y \in X, if x \leq y, then x \leq^* y. It is that second property that leads mathematicians to describe \,\leq^*\, as extending \,\leq. Alternatively, a linear extension may be viewed as an order-preserving bijection from a partially ordered set P to a chain C on the same ground set. Order-extension principle The statement that every partial order can be extended to a total order is known as the order-extension principle. A proof using the axiom of choice was first published by Edward Marczewski in 1930. Marczewski write ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Catalan Number
In combinatorial mathematics, the Catalan numbers are a sequence of natural numbers that occur in various counting problems, often involving recursively defined objects. They are named after the French-Belgian mathematician Eugène Charles Catalan (1814–1894). The ''n''th Catalan number can be expressed directly in terms of binomial coefficients by :C_n = \frac = \frac = \prod\limits_^\frac \qquad\textn\ge 0. The first Catalan numbers for ''n'' = 0, 1, 2, 3, ... are :1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, ... . Properties An alternative expression for ''C''''n'' is :C_n = - for n\ge 0, which is equivalent to the expression given above because \tbinom=\tfrac\tbinomn. This expression shows that ''C''''n'' is an integer, which is not immediately obvious from the first formula given. This expression forms the basis for a proof of the correctness of the formula. The Catalan numbers satisfy the recurrence relations :C_0 = 1 \quad \text \quad C_=\sum_^C_i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Order Dimension
In mathematics, the dimension of a partially ordered set (poset) is the smallest number of total orders the intersection of which gives rise to the partial order. This concept is also sometimes called the order dimension or the Dushnik–Miller dimension of the partial order. first studied order dimension; for a more detailed treatment of this subject than provided here, see . Formal definition The dimension of a poset ''P'' is the least integer ''t'' for which there exists a family :\mathcal R=(<_1,\dots,<_t) of s of ''P'' so that, for every ''x'' and ''y'' in ''P'', ''x'' precedes ''y'' in ''P'' if and only if it precedes ''y'' in all of the linear extensions. That is, :P=\bigcap\mathcal R=\bigcap_^t <_i. An alternative definition of order dimension is the minimal number of