Semi-order
   HOME
*



picture info

Semi-order
In order theory, a branch of mathematics, a semiorder is a type of ordering for items with numerical scores, where items with widely differing scores are compared by their scores and where scores within a given margin of error are deemed incomparable. Semiorders were introduced and applied in mathematical psychology by as a model of human preference. They generalize strict weak orderings, in which items with equal scores may be tied but there is no margin of error. They are a special case of partial orders and of interval orders, and can be characterized among the partial orders by additional axioms, or by two forbidden four-item suborders. Utility theory The original motivation for introducing semiorders was to model human preferences without assuming that incomparability is a transitive relation. For instance, suppose that x, y, and z represent three quantities of the same material, and that x is larger than z by the smallest amount that is perceptible as a difference, while y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Semiorder
In order theory, a branch of mathematics, a semiorder is a type of ordering for items with numerical scores, where items with widely differing scores are compared by their scores and where scores within a given margin of error are deemed incomparable. Semiorders were introduced and applied in mathematical psychology by as a model of human preference. They generalize strict weak orderings, in which items with equal scores may be tied but there is no margin of error. They are a special case of partial orders and of interval orders, and can be characterized among the partial orders by additional axioms, or by two forbidden four-item suborders. Utility theory The original motivation for introducing semiorders was to model human preferences without assuming that incomparability is a transitive relation. For instance, suppose that x, y, and z represent three quantities of the same material, and that x is larger than z by the smallest amount that is perceptible as a difference, while y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uncountable
In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than that of the set of all natural numbers. Characterizations There are many equivalent characterizations of uncountability. A set ''X'' is uncountable if and only if any of the following conditions hold: * There is no injective function (hence no bijection) from ''X'' to the set of natural numbers. * ''X'' is nonempty and for every ω-sequence of elements of ''X'', there exists at least one element of X not included in it. That is, ''X'' is nonempty and there is no surjective function from the natural numbers to ''X''. * The cardinality of ''X'' is neither finite nor equal to \aleph_0 (aleph-null, the cardinality of the natural numbers). * The set ''X'' has cardinality strictly greater than \aleph_0. The first three of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Interval Graph
In graph theory, an interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect. It is the intersection graph of the intervals. Interval graphs are chordal graphs and perfect graphs. They can be recognized in linear time, and an optimal graph coloring or maximum clique in these graphs can be found in linear time. The interval graphs include all proper interval graphs, graphs defined in the same way from a set of unit intervals. These graphs have been used to model food webs, and to study scheduling problems in which one must select a subset of tasks to be performed at non-overlapping times. Other applications include assembling contiguous subsequences in DNA mapping, and temporal reasoning. Definition An interval graph is an undirected graph formed from a family of intervals :S_i,\quad i=0,1,2,\dots by creating one vertex for each interval , and connecting two ver ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Indifference Graph
In graph theory, a branch of mathematics, an indifference graph is an undirected graph constructed by assigning a real number to each vertex and connecting two vertices by an edge when their numbers are within one unit of each other.. Indifference graphs are also the intersection graphs of sets of unit intervals, or of properly nested intervals (intervals none of which contains any other one). Based on these two types of interval representations, these graphs are also called unit interval graphs or proper interval graphs; they form a subclass of the interval graphs. Equivalent characterizations The finite indifference graphs may be equivalently characterized as *The intersection graphs of unit intervals, *The intersection graphs of sets of intervals no two of which are nested (one containing the other),. *The claw-free interval graphs, *The graphs that do not have an induced subgraph isomorphic to a claw ''K''1,3, net (a triangle with a degree-one vertex adjacent to each of the tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Comparability Graph
In graph theory, a comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial order. Comparability graphs have also been called transitively orientable graphs, partially orderable graphs, containment graphs, and divisor graphs. An incomparability graph is an undirected graph that connects pairs of elements that are not comparable to each other in a partial order. Definitions and characterization For any strict partially ordered set , the comparability graph of is the graph of which the vertices are the elements of and the edges are those pairs of elements such that . That is, for a partially ordered set, take the directed acyclic graph, apply transitive closure, and remove orientation. Equivalently, a comparability graph is a graph that has a transitive orientation, an assignment of directions to the edges of the graph (i.e. an orientation of the graph) such that the adjacency relation of the resulting directe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1/3–2/3 Conjecture
In order theory, a branch of mathematics, the 1/3–2/3 conjecture states that, if one is comparison sorting a set of items then, no matter what comparisons may have already been performed, it is always possible to choose the next comparison in such a way that it will reduce the number of possible sorted orders by a factor of 2/3 or better. Equivalently, in every finite partially ordered set that is not totally ordered, there exists a pair of elements ''x'' and ''y'' with the property that at least 1/3 and at most 2/3 of the linear extensions of the partial order place ''x'' earlier than ''y''. Example The partial order formed by three elements ''a'', ''b'', and ''c'' with a single comparability relationship, has three linear extensions, and In all three of these extensions, ''a'' is earlier than ''b''. However, ''a'' is earlier than ''c'' in only two of them, and later than ''c'' in the third. Therefore, the pair of ''a'' and ''c'' have the desired property, showing that this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Extension
In order theory, a branch of mathematics, a linear extension of a partial order is a total order (or linear order) that is compatible with the partial order. As a classic example, the lexicographic order of totally ordered sets is a linear extension of their product order. Definitions Given any partial orders \,\leq\, and \,\leq^*\, on a set X, \,\leq^*\, is a linear extension of \,\leq\, exactly when (1) \,\leq^*\, is a total order and (2) for every x, y \in X, if x \leq y, then x \leq^* y. It is that second property that leads mathematicians to describe \,\leq^*\, as extending \,\leq. Alternatively, a linear extension may be viewed as an order-preserving bijection from a partially ordered set P to a chain C on the same ground set. Order-extension principle The statement that every partial order can be extended to a total order is known as the order-extension principle. A proof using the axiom of choice was first published by Edward Marczewski in 1930. Marczewski write ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Order Dimension
In mathematics, the dimension of a partially ordered set (poset) is the smallest number of total orders the intersection of which gives rise to the partial order. This concept is also sometimes called the order dimension or the Dushnik–Miller dimension of the partial order. first studied order dimension; for a more detailed treatment of this subject than provided here, see . Formal definition The dimension of a poset ''P'' is the least integer ''t'' for which there exists a family :\mathcal R=(<_1,\dots,<_t) of s of ''P'' so that, for every ''x'' and ''y'' in ''P'', ''x'' precedes ''y'' in ''P'' if and only if it precedes ''y'' in all of the linear extensions. That is, :P=\bigcap\mathcal R=\bigcap_^t <_i. An alternative definition of order dimension is the minimal number of

picture info

Catalan Number
In combinatorial mathematics, the Catalan numbers are a sequence of natural numbers that occur in various counting problems, often involving recursively defined objects. They are named after the French-Belgian mathematician Eugène Charles Catalan (1814–1894). The ''n''th Catalan number can be expressed directly in terms of binomial coefficients by :C_n = \frac = \frac = \prod\limits_^\frac \qquad\textn\ge 0. The first Catalan numbers for ''n'' = 0, 1, 2, 3, ... are :1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, ... . Properties An alternative expression for ''C''''n'' is :C_n = - for n\ge 0, which is equivalent to the expression given above because \tbinom=\tfrac\tbinomn. This expression shows that ''C''''n'' is an integer, which is not immediately obvious from the first formula given. This expression forms the basis for a proof of the correctness of the formula. The Catalan numbers satisfy the recurrence relations :C_0 = 1 \quad \text \quad C_=\sum_^C_i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quasitransitive Relation
The mathematical notion of quasitransitivity is a weakened version of transitivity that is used in social choice theory and microeconomics. Informally, a relation is quasitransitive if it is symmetric for some values and transitive elsewhere. The concept was introduced by to study the consequences of Arrow's theorem. Formal definition A binary relation T over a set ''X'' is quasitransitive if for all ''a'', ''b'', and ''c'' in ''X'' the following holds: : (a\operatornameb) \wedge \neg(b\operatornamea) \wedge (b\operatornamec) \wedge \neg(c\operatornameb) \Rightarrow (a\operatornamec) \wedge \neg(c\operatornamea). If the relation is also antisymmetric, T is transitive. Alternately, for a relation T, define the asymmetric or "strict" part P: :(a\operatornameb) \Leftrightarrow (a\operatornameb) \wedge \neg(b\operatornamea). Then T is quasitransitive if and only if P is transitive. Examples Preferences are assumed to be quasitransitive (rather than transitive) in some econom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lawrence J
Lawrence may refer to: Education Colleges and universities * Lawrence Technological University, a university in Southfield, Michigan, United States * Lawrence University, a liberal arts university in Appleton, Wisconsin, United States Preparatory & high schools * Lawrence Academy at Groton, a preparatory school in Groton, Massachusetts, United States * Lawrence College, Ghora Gali, a high school in Pakistan * Lawrence School, Lovedale, a high school in India * The Lawrence School, Sanawar, a high school in India Research laboratories * Lawrence Berkeley National Laboratory, United States * Lawrence Livermore National Laboratory, United States People * Lawrence (given name), including a list of people with the name * Lawrence (surname), including a list of people with the name * Lawrence (band), an American soul-pop group * Lawrence (judge royal) (died after 1180), Hungarian nobleman, Judge royal 1164–1172 * Lawrence (musician), Lawrence Hayward (born 1961), British musician * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dean T
Dean may refer to: People * Dean (given name) * Dean (surname), a surname of Anglo-Saxon English origin * Dean (South Korean singer), a stage name for singer Kwon Hyuk * Dean Delannoit, a Belgian singer most known by the mononym Dean Titles * Dean (Christianity), persons in certain positions of authority within a religious hierarchy * Dean (education), persons in certain positions of authority in some educational establishments * Dean of the Diplomatic Corps, most senior ambassador in a country's diplomatic corps * Dean of the House, the most senior member of a country's legislature Places * Dean, Victoria, Australia * Dean, Nova Scotia, Canada * De'an County, Jiujiang, Jiangxi, China United Kingdom * Lower Dean, Bedfordshire, England * Upper Dean, Bedfordshire, England * Dean, Cumbria, England * Dean, Oxfordshire, England * Dean, a hamlet in Cranmore, Somerset, England * Dean Village, Midlothian, Scotland * Forest of Dean, Gloucestershire, England * Dene (valley) common topon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]