HOME



picture info

Self-avoiding Walks
In mathematics, a self-avoiding walk (SAW) is a sequence of moves on a lattice (group), lattice (a lattice path) that does not visit the same point more than once. This is a special case of the graph theory, graph theoretical notion of a Path (graph theory), path. A self-avoiding polygon (SAP) is a closed self-avoiding walk on a lattice. Very little is known rigorously about the self-avoiding walk from a mathematical perspective, although physicists have provided numerous conjectures that are believed to be true and are strongly supported by numerical simulations. In computational physics, a self-avoiding walk is a chain-like path in or with a certain number of nodes, typically a fixed step length and has the property that it doesn't cross itself or another walk. A system of SAWs satisfies the so-called excluded volume condition. In higher dimensions, the SAW is believed to behave much like the ordinary random walk. SAWs and SAPs play a central role in the modeling of the top ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fractal
In mathematics, a fractal is a Shape, geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set. This exhibition of similar patterns at increasingly smaller scales is called self-similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, the shape is called affine geometry, affine self-similar. Fractal geometry lies within the mathematical branch of measure theory. One way that fractals are different from finite geometric figures is how they Scaling (geometry), scale. Doubling the edge lengths of a filled polygon multiplies its area by four, which is two (the ratio of the new to the old side length) raised to the power of two (the conventional dimension of the filled polygon). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fekete's Lemma
In mathematics, subadditivity is a property of a function that states, roughly, that evaluating the function for the sum of two elements of the domain always returns something less than or equal to the sum of the function's values at each element. There are numerous examples of subadditive functions in various areas of mathematics, particularly norms and square roots. Additive maps are special cases of subadditive functions. Definitions A subadditive function is a function f \colon A \to B, having a domain ''A'' and an ordered codomain ''B'' that are both closed under addition, with the following property: \forall x, y \in A, f(x+y)\leq f(x)+f(y). An example is the square root function, having the non-negative real numbers as domain and codomain: since \forall x, y \geq 0 we have: \sqrt\leq \sqrt+\sqrt. A sequence \left \_ is called subadditive if it satisfies the inequality a_\leq a_n+a_m for all ''m'' and ''n''. This is a special case of subadditive function, if a sequ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Connective Constant
In mathematics, the connective constant is a numerical quantity associated with self-avoiding walks on a lattice. It is studied in connection with the notion of universality in two-dimensional statistical physics models. While the connective constant depends on the choice of lattice so itself is not universal (similarly to other lattice-dependent quantities such as the critical probability threshold for percolation), it is nonetheless an important quantity that appears in conjectures for universal laws. Furthermore, the mathematical techniques used to understand the connective constant, for example in the recent rigorous proof by Duminil-Copin and Smirnov that the connective constant of the hexagonal lattice has the precise value \sqrt, may provide clues to a possible approach for attacking other important open problems in the study of self-avoiding walks, notably the conjecture that self-avoiding walks converge in the scaling limit to the Schramm–Loewner evolution. Defini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universality (dynamical Systems)
In statistical mechanics, universality is the observation that there are properties for a large class of systems that are independent of the Dynamics (mechanics), dynamical details of the system. Systems display universality in a scaling limit, when a large number of interacting parts come together. The modern meaning of the term was introduced by Leo Kadanoff in the 1960s, but a simpler version of the concept was already implicit in the van der Waals equation and in the earlier Landau theory of phase transitions, which did not incorporate scaling correctly. The term is slowly gaining a broader usage in several fields of mathematics, including combinatorics and probability theory, whenever the quantitative features of a structure (such as asymptotic behaviour) can be deduced from a few global parameters appearing in the definition, without requiring knowledge of the details of the system. The renormalization group provides an intuitively appealing, albeit mathematically non-rigoro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Problem
In theoretical computer science, a computational problem is one that asks for a solution in terms of an algorithm. For example, the problem of factoring :"Given a positive integer ''n'', find a nontrivial prime factor of ''n''." is a computational problem that has a solution, as there are many known integer factorization algorithms. A computational problem can be viewed as a set of ''instances'' or ''cases'' together with a, possibly empty, set of ''solutions'' for every instance/case. The question then is, whether there exists an algorithm that maps instances to solutions. For example, in the factoring problem, the instances are the integers ''n'', and solutions are prime numbers ''p'' that are the nontrivial prime factors of ''n''. An example of a computational problem without a solution is the Halting problem. Computational problems are one of the main objects of study in theoretical computer science. One is often interested not only in mere existence of an algorithm, b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetry
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant under some Transformation (function), transformations, such as Translation (geometry), translation, Reflection (mathematics), reflection, Rotation (mathematics), rotation, or Scaling (geometry), scaling. Although these two meanings of the word can sometimes be told apart, they are intricately related, and hence are discussed together in this article. Mathematical symmetry may be observed with respect to the passage of time; as a space, spatial relationship; through geometric transformations; through other kinds of functional transformations; and as an aspect of abstract objects, including scientific model, theoretic models, language, and music. This article describes symmetry from three perspectives: in mathematics, including geometry, the m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure Theory
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude (mathematics), magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integral, integration theory, and can be generalized to assume signed measure, negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to Ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Markov Chain Monte Carlo
In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution. Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's Discrete-time Markov chain#Stationary distributions, equilibrium distribution matches the target distribution. The more steps that are included, the more closely the distribution of the sample matches the actual desired distribution. Markov chain Monte Carlo methods are used to study probability distributions that are too complex or too highly N-dimensional space, dimensional to study with analytic techniques alone. Various algorithms exist for constructing such Markov chains, including the Metropolis–Hastings algorithm. General explanation Markov chain Monte Carlo methods create samples from a continuous random variable, with probability density proportional to a known function. These samples can be used to e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pivot Algorithm
Pivot may refer to: *Pivot, the point of rotation in a lever system *More generally, the center point of any rotational system *Pivot joint, a kind of joint between bones in the body * Pivot turn, a dance move Companies * Incitec Pivot, an Australian chemicals and explosives manufacturer * Pivot Legal Society, a legal advocacy organization based in Vancouver, British Columbia * Pivot Wireless, a cell phone service, created by a joint venture between Sprint and multiple cable companies Computing *Apache Pivot, an open-source platform for building applications in Java * Microsoft Live Labs Pivot, a data search application *Morrow Pivot and Morrow Pivot II, early laptop computers *Pivot, an element of the quicksort algorithm * Pivot display, a display which can change orientation * Pivot Stickfigure Animator, stick-figure animation software *Pivot table, a data summarization tool in spreadsheets *Pivotal Games, a former UK video game developer *Pivoting, a computer security exploi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simulation
A simulation is an imitative representation of a process or system that could exist in the real world. In this broad sense, simulation can often be used interchangeably with model. Sometimes a clear distinction between the two terms is made, in which simulations require the use of models; the model represents the key characteristics or behaviors of the selected system or process, whereas the simulation represents the evolution of the model over time. Another way to distinguish between the terms is to define simulation as experimentation with the help of a model. This definition includes time-independent simulations. Often, computer simulation, computers are used to execute the simulation. Simulation is used in many contexts, such as simulation of technology for performance tuning or optimizing, safety engineering, testing, training, education, and video games. Simulation is also used with scientific modelling of natural systems or human systems to gain insight into their functio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]