HOME
*





Scheme Of Finite Type
For a homomorphism ''A'' → ''B'' of commutative rings, ''B'' is called an ''A''-algebra of finite type if ''B'' is a finitely generated as an ''A''-algebra. It is much stronger for ''B'' to be a finite ''A''-algebra, which means that ''B'' is finitely generated as an ''A''-module. For example, for any commutative ring ''A'' and natural number ''n'', the polynomial ring ''A'' 'x''1, ..., ''xn''is an ''A''-algebra of finite type, but it is not a finite ''A''-module unless ''A'' = 0 or ''n'' = 0. Another example of a finite-type morphism which is not finite is \mathbb \to \mathbb x,y]/(y^2 - x^3 - t). The analogous notion in terms of schemes is: a morphism ''f'': ''X'' → ''Y'' of schemes is of finite type if ''Y'' has a covering by affine open subschemes ''Vi'' = Spec ''Ai'' such that ''f''−1(''Vi'') has a finite covering by affine open subschemes ''Uij'' = Spec ''Bij'' with ''Bij'' an ''Ai''-algebra of finite type. One also says that ''X'' is of finite type over ''Y''. For exa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finitely Generated Algebra
In mathematics, a finitely generated algebra (also called an algebra of finite type) is a commutative associative algebra ''A'' over a field ''K'' where there exists a finite set of elements ''a''1,...,''a''''n'' of ''A'' such that every element of ''A'' can be expressed as a polynomial in ''a''1,...,''a''''n'', with coefficients in ''K''. Equivalently, there exist elements a_1,\dots,a_n\in A s.t. the evaluation homomorphism at =(a_1,\dots,a_n) :\phi_\colon K _1,\dots,X_ntwoheadrightarrow A is surjective; thus, by applying the first isomorphism theorem, A \simeq K _1,\dots,X_n(\phi_). Conversely, A:= K _1,\dots,X_nI for any ideal I\subset K _1,\dots,X_n/math> is a K-algebra of finite type, indeed any element of A is a polynomial in the cosets a_i:=X_i+I, i=1,\dots,n with coefficients in K. Therefore, we obtain the following characterisation of finitely generated K-algebras :A is a finitely generated K-algebra if and only if it is isomorphic to a quotient ring of the type K _1,\do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finitely Generated Module
In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring ''R'' may also be called a finite ''R''-module, finite over ''R'', or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide. A finitely generated module over a field is simply a finite-dimensional vector space, and a finitely generated module over the integers is simply a finitely generated abelian group. Definition The left ''R''-module ''M'' is finitely generated if there exist ''a''1, ''a''2, ..., ''a''''n'' in ''M'' such that for any ''x'' in ''M'', there exist ''r''1, ''r''2, ..., ''r''''n'' in ''R'' with ''x'' = ''r''1''a''1 + ''r''2''a''2 + ... + ''r''''n''''a''''n''. The set is referred to as a generating ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-projective Scheme
In mathematics, a quasi-projective variety in algebraic geometry is a locally closed subset of a projective variety, i.e., the intersection inside some projective space of a Zariski-open and a Zariski-closed subset. A similar definition is used in scheme theory, where a ''quasi-projective scheme'' is a locally closed subscheme of some projective space. Relationship to affine varieties An affine space is a Zariski-open subset of a projective space, and since any closed affine subset U can be expressed as an intersection of the projective completion \bar and the affine space embedded in the projective space, this implies that any affine variety is quasiprojective. There are locally closed subsets of projective space that are not affine, so that quasi-projective is more general than affine. Taking the complement of a single point in projective space of dimension at least 2 gives a non-affine quasi-projective variety. This is also an example of a quasi-projective variety that is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Noether Normalization Lemma
In mathematics, the Noether normalization lemma is a result of commutative algebra, introduced by Emmy Noether in 1926. It states that for any field ''k'', and any finitely generated commutative ''k''-algebra ''A'', there exists a non-negative integer ''d'' and algebraically independent elements ''y''1, ''y''2, ..., ''y''''d'' in ''A'' such that ''A'' is a finitely generated module over the polynomial ring ''S'' = ''k'' 'y''1, ''y''2, ..., ''y''''d'' The integer ''d'' above is uniquely determined; it is the Krull dimension of the ring ''A''. When ''A'' is an integral domain, ''d'' is also the transcendence degree of the field of fractions of ''A'' over ''k''. The theorem has a geometric interpretation. Suppose ''A'' is integral. Let ''S'' be the coordinate ring of the ''d''-dimensional affine space \mathbb A^d_k, and let ''A'' be the coordinate ring of some other ''d''-dimensional affine variety ''X''. Then the inclusion map ''S'' → ''A'' induces a surjective f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Scheme
In algebraic geometry, a projective variety over an algebraically closed field ''k'' is a subset of some projective ''n''-space \mathbb^n over ''k'' that is the zero-locus of some finite family of homogeneous polynomials of ''n'' + 1 variables with coefficients in ''k'', that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of \mathbb^n. A projective variety is a projective curve if its dimension is one; it is a projective surface if its dimension is two; it is a projective hypersurface if its dimension is one less than the dimension of the containing projective space; in this case it is the set of zeros of a single homogeneous polynomial. If ''X'' is a projective variety defined by a homogeneous prime ideal ''I'', then the quotient ring :k _0, \ldots, x_nI is called the homogeneous coordinate ring of ''X''. Basic invariants of ''X'' such as the degree and the dimen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Space
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines. This definition of a projective space has the disadvantage of not being isotropic, having two different sorts of points, which must be considered separately in proofs. Therefore, other definitions are generally preferred. There are two classes of definitions. In synthetic geometry, ''point'' and ''line'' are primitive entities that are related by the incidence relation "a point is on a line" or "a line passes through a point", which is subject to the axioms of projective geometry. For some such set of axioms, the projective spaces that are defined have been shown to be equivalent to those resulting from the fol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]