Right Half-plane
   HOME
*





Right Half-plane
In complex analysis, the (open) right half-plane is the set of all points in the complex plane whose real part In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a ... is strictly positive, that is, the set \. References * Rudin, W., ''Real and Complex Analysis, 3 ed.'' (McGraw-Hill, 1986). * Ahlfors, L., ''Complex Analysis, 3 ed.'' (McGraw-Hill, 1979). * Kato, T., ''Perturbation theory for linear operators'', 2 ed. (Springer-Verlag, 1995) Complex analysis {{Mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear engineering, nuclear, aerospace engineering, aerospace, mechanical engineering, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is Analyticity of holomorphic functions, analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Plane
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the imaginary numbers. The complex plane allows a geometric interpretation of complex numbers. Under addition, they add like vectors. The multiplication of two complex numbers can be expressed more easily in polar coordinates—the magnitude or ''modulus'' of the product is the product of the two absolute values, or moduli, and the angle or ''argument'' of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a rotation. The complex plane is sometimes known as the Argand plane or Gauss plane. Notational conventions Complex numbers In complex analysis, the complex numbers are customarily represented by the symbol ''z'', which can be separated into its real (''x'') and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Part
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Walter Rudin
Walter may refer to: People * Walter (name), both a surname and a given name * Little Walter, American blues harmonica player Marion Walter Jacobs (1930–1968) * Gunther (wrestler), Austrian professional wrestler and trainer Walter Hahn (born 1987), who previously wrestled as "Walter" * Walter, standard author abbreviation for Thomas Walter (botanist) ( – 1789) Companies * American Chocolate, later called Walter, an American automobile manufactured from 1902 to 1906 * Walter Energy, a metallurgical coal producer for the global steel industry * Walter Aircraft Engines, Czech manufacturer of aero-engines Films and television * ''Walter'' (1982 film), a British television drama film * Walter Vetrivel, a 1993 Tamil crime drama film * ''Walter'' (2014 film), a British television crime drama * ''Walter'' (2015 film), an American comedy-drama film * ''Walter'' (2020 film), an Indian crime drama film * ''W*A*L*T*E*R'', a 1984 pilot for a spin-off of the TV series ''M*A*S*H'' * ''W ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lars Ahlfors
Lars Valerian Ahlfors (18 April 1907 – 11 October 1996) was a Finnish mathematician, remembered for his work in the field of Riemann surfaces and his text on complex analysis. Background Ahlfors was born in Helsinki, Finland. His mother, Sievä Helander, died at his birth. His father, Axel Ahlfors, was a professor of engineering at the Helsinki University of Technology. The Ahlfors family was Swedish-speaking, so he first attended the private school Nya svenska samskolan where all classes were taught in Swedish. Ahlfors studied at University of Helsinki from 1924, graduating in 1928 having studied under Ernst Lindelöf and Rolf Nevanlinna. He assisted Nevanlinna in 1929 with his work on Denjoy's conjecture on the number of asymptotic values of an entire function. In 1929 Ahlfors published the first proof of this conjecture, now known as the Denjoy–Carleman–Ahlfors theorem. It states that the number of asymptotic values approached by an entire function of order ρ alon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tosio Kato
was a Japanese mathematician who worked with partial differential equations, mathematical physics and functional analysis. Kato studied physics and received his undergraduate degree in 1941 at the Imperial University of Tokyo. After disruption of the Second World War, he received his doctorate in 1951 from the University of Tokyo, where he became a professor in 1958. From 1962, he worked as a professor at the University of California at Berkeley in the United States. Many works of Kato are related to mathematical physics. In 1951, he showed the self-adjointness of Hamiltonians for realistic (singular) potentials. He dealt with nonlinear evolution equations, the Korteweg–de Vries equation (Kato smoothing effect in 1983) and with solutions of the Navier-Stokes equation."Tosio Kato (19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]