Rewrite Closure
   HOME



picture info

Rewrite Closure
In theoretical computer science, in particular in automated reasoning about formal equations, reduction orderings are used to prevent endless loops. Rewrite orders, and, in turn, rewrite relations, are generalizations of this concept that have turned out to be useful in theoretical investigations. Motivation Intuitively, a reduction order ''R'' relates two terms ''s'' and ''t'' if ''t'' is properly "simpler" than ''s'' in some sense. For example, simplification of terms may be a part of a computer algebra program, and may be using the rule set . In order to prove impossibility of endless loops when simplifying a term using these rules, the reduction order defined by "''sRt'' if term ''t'' is properly shorter than term ''s''" can be used; applying any rule from the set will always properly shorten the term. In contrast, to establish termination of "distributing-out" using the rule ''x''*(''y''+''z'') → ''x''*''y''+''x''*''z'', a more elaborate reduction order will be needed, si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle Diagram Of Rewrite Rule Application Svg
A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimensional line segments. A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of angles of a triangle always equals a straight angle (180 degrees or π radians). The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the ''base'', in which case the opposite vertex is called the ''apex''; the shortest segment between the base and apex is the ''height''. The area of a triangle equals one-half the product of height and base length. In Euclidean geometry, any two points determine a unique line segment situated within a unique straight line, and any three points that do not all lie on the same straight line determine a unique triangle situated within a u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Well-founded
In mathematics, a binary relation is called well-founded (or wellfounded or foundational) on a set (mathematics), set or, more generally, a Class (set theory), class if every non-empty subset has a minimal element with respect to ; that is, there exists an such that, for every , one does not have . In other words, a relation is well-founded if: (\forall S \subseteq X)\; [S \neq \varnothing \implies (\exists m \in S) (\forall s \in S) \lnot(s \mathrel m)]. Some authors include an extra condition that is Set-like relation, set-like, i.e., that the elements less than any given element form a set. Equivalently, assuming the axiom of dependent choice, a relation is well-founded when it contains no infinite descending chains, meaning there is no infinite sequence of elements of such that for every natural number . In order theory, a partial order is called well-founded if the corresponding strict order is a well-founded relation. If the order is a total order then it is called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kruskal's Tree Theorem
In mathematics, Kruskal's tree theorem states that the set of finite trees over a well-quasi-ordered set of labels is itself well-quasi-ordered under homeomorphic embedding. A finitary application of the theorem gives the existence of the fast-growing TREE function. TREE(3) is largely accepted to be one of the largest simply defined finite numbers, dwarfing other large numbers such as Graham's number and googolplex. History The theorem was conjectured by Andrew Vázsonyi and proved by ; a short proof was given by . It has since become a prominent example in reverse mathematics as a statement that cannot be proved in ATR0 (a second-order arithmetic theory with a form of arithmetical transfinite recursion). In 2004, the result was generalized from trees to graphs as the Robertson–Seymour theorem, a result that has also proved important in reverse mathematics and leads to the even-faster-growing SSCG function, which dwarfs \text(3). Statement The version given here is that p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Higman's Lemma
In mathematics, Higman's lemma states that the set \Sigma^* of finite sequences over a finite alphabet \Sigma, as partially ordered by the subsequence relation, is a well partial order. That is, if w_1, w_2, \ldots\in \Sigma^* is an infinite sequence of words over a finite alphabet \Sigma, then there exist indices i < j such that w_i can be obtained from w_j by deleting some (possibly none) symbols. More generally the set of sequences is well-quasi-ordered even when \Sigma is not necessarily finite, but is itself well-quasi-ordered, and the subsequence ordering is generalized into an "embedding" quasi-order that allows the replacement of symbols by earlier symbols in the well-quasi-ordering of \Sigma. This is a special case of the later . It is named after

Termination (rewriting)
In mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a formula with other terms. Such methods may be achieved by rewriting systems (also known as rewrite systems, rewrite engines, or reduction systems). In their most basic form, they consist of a set of objects, plus relations on how to transform those objects. Rewriting can be non-deterministic. One rule to rewrite a term could be applied in many different ways to that term, or more than one rule could be applicable. Rewriting systems then do not provide an algorithm for changing one term to another, but a set of possible rule applications. When combined with an appropriate algorithm, however, rewrite systems can be viewed as computer programs, and several theorem provers and declarative programming languages are based on term rewriting. Example cases Logic In logic, the procedure for obtaining the conjunctive normal form (CNF) of a formula can be implemented as a r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transitive Closure
In mathematics, the transitive closure of a homogeneous binary relation on a set (mathematics), set is the smallest Relation (mathematics), relation on that contains and is Transitive relation, transitive. For finite sets, "smallest" can be taken in its usual sense, of having the fewest related pairs; for infinite sets is the unique minimal element, minimal transitive superset of . For example, if is a set of airports and means "there is a direct flight from airport to airport " (for and in ), then the transitive closure of on is the relation such that means "it is possible to fly from to in one or more flights". More formally, the transitive closure of a binary relation on a set is the smallest (w.r.t. ⊆) transitive relation on such that ⊆ ; see . We have = if, and only if, itself is transitive. Conversely, transitive reduction adduces a minimal relation from a given relation such that they have the same closure, that is, ; however, many differen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reflexive Closure
In mathematics, the reflexive closure of a binary relation R on a set X is the smallest reflexive relation on X that contains R, i.e. the set R \cup \. For example, if X is a set of distinct numbers and x R y means "x is less than y", then the reflexive closure of R is the relation "x is less than or equal Definition The reflexive closure S of a relation R on a set X is given by S = R \cup \ In plain English, the reflexive closure of R is the union of R with the identity relation In mathematics, a homogeneous relation (also called endorelation) on a set ''X'' is a binary relation between ''X'' and itself, i.e. it is a subset of the Cartesian product . This is commonly phrased as "a relation on ''X''" or "a (binary) relation ... on X. Example As an example, if X = \ R = \ then the relation R is already reflexive by itself, so it does not differ from its reflexive closure. However, if any of the reflexive pairs in R was absent, it would be inserted for the reflexive closure. Fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Closure
In mathematics, the symmetric closure of a binary relation R on a set X is the smallest symmetric relation A symmetric relation is a type of binary relation. Formally, a binary relation ''R'' over a set ''X'' is symmetric if: : \forall a, b \in X(a R b \Leftrightarrow b R a) , where the notation ''aRb'' means that . An example is the relation "is equ ... on X that contains R. For example, if X is a set of airports and xRy means "there is a direct flight from airport x to airport y", then the symmetric closure of R is the relation "there is a direct flight either from x to y or from y to x". Or, if X is the set of humans and R is the relation 'parent of', then the symmetric closure of R is the relation "x is a parent or a child of y". Definition The symmetric closure S of a relation R on a set X is given by S = R \cup \. In other words, the symmetric closure of R is the union of R with its converse relation, R^. See also * * References * Franz Baader and Tobias ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Converse Relation
In mathematics, the converse of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if X and Y are sets and L \subseteq X \times Y is a relation from X to Y, then L^ is the relation defined so that yL^x if and only if xLy. In set-builder notation, :L^ = \. Since a relation may be represented by a logical matrix, and the logical matrix of the converse relation is the transpose of the original, the converse relation is also called the transpose relation. It has also been called the opposite or dual of the original relation, the inverse of the original relation,Gerard O'Regan (2016): ''Guide to Discrete Mathematics: An Accessible Introduction to the History, Theory, Logic and Applications'' or the reciprocal L^ of the relation L. Other notations for the converse relation include L^, L^, \breve, L^, or L^. The notati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reflexive Relation
In mathematics, a binary relation R on a set X is reflexive if it relates every element of X to itself. An example of a reflexive relation is the relation " is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations. Etymology The word ''reflexive'' is originally derived from the Medieval Latin ''reflexivus'' ('recoiling' reflex.html" ;"title="f. ''reflex">f. ''reflex'' or 'directed upon itself') (c. 1250 AD) from the classical Latin ''reflexus-'' ('turn away', 'reflection') + ''-īvus'' (suffix). The word entered Early Modern English in the 1580s. The sense of the word meaning 'directed upon itself', as now used in mathematics, surviving mostly by its use in philosophy and grammar (cf. ''Reflexive verb'' and ''Reflexive pronoun''). The first e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Term (logic)
In mathematical logic, a term denotes a mathematical object while a formula denotes a mathematical fact. In particular, terms appear as components of a formula. This is analogous to natural language, where a noun phrase refers to an object and a whole sentence refers to a fact. A first-order term is recursively constructed from constant symbols, variable symbols, and function symbols. An expression formed by applying a predicate symbol to an appropriate number of terms is called an atomic formula, which evaluates to true or false in bivalent logics, given an interpretation. For example, is a term built from the constant 1, the variable , and the binary function symbols and ; it is part of the atomic formula which evaluates to true for each real-numbered value of . Besides in logic, terms play important roles in universal algebra, and rewriting systems. Definition Given a set ''V'' of variable symbols, a set ''C'' of constant symbols and sets ''F''''n'' of ''n''-ary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]