Retract (topology)
   HOME
*





Retract (topology)
In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of ''continuously shrinking'' a space into a subspace. An absolute neighborhood retract (ANR) is a particularly well-behaved type of topological space. For example, every topological manifold is an ANR. Every ANR has the homotopy type of a very simple topological space, a CW complex. Definitions Retract Let ''X'' be a topological space and ''A'' a subspace of ''X''. Then a continuous map :r\colon X \to A is a retraction if the restriction of ''r'' to ''A'' is the identity map on ''A''; that is, r(a) = a for all ''a'' in ''A''. Equivalently, denoting by :\iota\colon A \hookrightarrow X the inclusion, a retraction is a continuous map ''r'' such that :r \circ \iota = \operatorname_A, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Twist (mathematics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity (mathematics), continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopy, homotopies. A property that is invariant under such deformations is a topological property. Basic exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Hausdorff Space
In mathematics, a weak Hausdorff space or weakly Hausdorff space is a topological space where the image of every continuous map from a compact Hausdorff space into the space is closed. In particular, every Hausdorff space is weak Hausdorff. As a separation property, it is stronger than T1, which is equivalent to the statement that points are closed. Specifically, every weak Hausdorff space is a T1 space. The notion was introduced by M. C. McCord to remedy an inconvenience of working with the category of Hausdorff spaces. It is often used in tandem with compactly generated spaces in algebraic topology. For that, see the category of compactly generated weak Hausdorff spaces. k-Hausdorff spaces A k-Hausdorff space is a topological space which satisfies any of the following equivalent conditions: * Each compact subspace is Hausdorff. * The diagonal \ is k-closed in X \times X. * Each compact subspace is closed and strongly locally compact. In these characterizations: * A s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE