Rectified 7-simplex
   HOME
*



picture info

Rectified 7-simplex
In seven-dimensional geometry, a rectified 7-simplex is a convex uniform 7-polytope, being a rectification of the regular 7-simplex. There are four unique degrees of rectifications, including the zeroth, the 7-simplex itself. Vertices of the ''rectified 7-simplex'' are located at the edge-centers of the ''7-simplex''. Vertices of the ''birectified 7-simplex'' are located in the triangular face centers of the ''7-simplex''. Vertices of the ''trirectified 7-simplex'' are located in the tetrahedral cell centers of the ''7-simplex''. Rectified 7-simplex The rectified 7-simplex is the edge figure of the 251 honeycomb. It is called 05,1 for its branching Coxeter-Dynkin diagram, shown as . E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S. Alternate names * Rectified octaexon (Acronym: roc) (Jonathan Bowers) Coordinates The vertices of the ''rectified 7-simplex'' can be most simply positioned in 8-space as permutations of (0,0,0,0,0,0,1,1). This co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

7-simplex T0
In 7-dimensional geometry, a 7-simplex is a self-dual regular 7-polytope. It has 8 vertices, 28 edges, 56 triangle faces, 70 tetrahedral cells, 56 5-cell 5-faces, 28 5-simplex 6-faces, and 8 6-simplex 7-faces. Its dihedral angle is cos−1(1/7), or approximately 81.79°. Alternate names It can also be called an octaexon, or octa-7-tope, as an 8- facetted polytope in 7-dimensions. The name ''octaexon'' is derived from ''octa'' for eight facets in Greek and ''-ex'' for having six-dimensional facets, and ''-on''. Jonathan Bowers gives an octaexon the acronym oca. As a configuration This configuration matrix represents the 7-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces and 6-faces. The diagonal numbers say how many of each element occur in the whole 7-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation. \beg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coxeter Group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups , and finite Coxeter groups were classified in 1935 . Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the symmetry groups of regular polytopes, and the Weyl groups of simple Lie algebras. Examples of infinite Coxeter groups include the triangle groups corresponding to regular tessellations of the Euclidean plane and the hyperbolic plane, and the Weyl groups of infinite-dimensional Kac–Moody algebras. Standard ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectified 5-simplex
In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex. There are three unique degrees of rectifications, including the zeroth, the 5-simplex itself. Vertices of the ''rectified 5-simplex'' are located at the edge-centers of the ''5-simplex''. Vertices of the ''birectified 5-simplex'' are located in the triangular face centers of the ''5-simplex''. Rectified 5-simplex In five-dimensional geometry, a rectified 5-simplex is a uniform 5-polytope with 15 vertices, 60 edges, 80 triangular faces, 45 cells (30 tetrahedral, and 15 octahedral), and 12 4-faces (6 5-cell and 6 rectified 5-cells). It is also called 03,1 for its branching Coxeter-Dynkin diagram, shown as . E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S. Alternate names * Rectified hexateron (Acronym: rix) (Jonathan Bowers) Coordinates The vertices of the rectified 5-simplex can be more simply positioned on a hyp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

5-simplex T0
In five-dimensional geometry, a 5- simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°. The 5-simplex is a solution to the problem: ''Make 20 equilateral triangles using 15 matchsticks, where each side of every triangle is exactly one matchstick.'' Alternate names It can also be called a hexateron, or hexa-5-tope, as a 6- facetted polytope in 5-dimensions. The name ''hexateron'' is derived from ''hexa-'' for having six facets and '' teron'' (with ''ter-'' being a corruption of ''tetra-'') for having four-dimensional facets. By Jonathan Bowers, a hexateron is given the acronym hix. As a configuration This configuration matrix represents the 5-simplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-simplex. The nondiagonal num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

5-simplex
In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°. The 5-simplex is a solution to the problem: ''Make 20 equilateral triangles using 15 matchsticks, where each side of every triangle is exactly one matchstick.'' Alternate names It can also be called a hexateron, or hexa-5-tope, as a 6- facetted polytope in 5-dimensions. The name ''hexateron'' is derived from ''hexa-'' for having six facets and '' teron'' (with ''ter-'' being a corruption of ''tetra-'') for having four-dimensional facets. By Jonathan Bowers, a hexateron is given the acronym hix. As a configuration This configuration matrix represents the 5-simplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-simplex. The nondiagonal numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




6-simplex T2
In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices, 21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-simplex 5-faces. Its dihedral angle is cos−1(1/6), or approximately 80.41°. Alternate names It can also be called a heptapeton, or hepta-6-tope, as a 7- facetted polytope in 6-dimensions. The name ''heptapeton'' is derived from ''hepta'' for seven facets in Greek and ''-peta'' for having five-dimensional facets, and ''-on''. Jonathan Bowers gives a heptapeton the acronym hop. As a configuration This configuration matrix represents the 6-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces and 5-faces. The diagonal numbers say how many of each element occur in the whole 6-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation. \begin\begin7 & 6 & 15 & 20 & 15 & 6 \\ 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Birectified 6-simplex
In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a Rectification (geometry), rectification of the regular 6-simplex. There are three unique degrees of rectifications, including the zeroth, the 6-simplex itself. Vertices of the ''rectified 6-simplex'' are located at the edge-centers of the ''6-simplex''. Vertices of the ''birectified 6-simplex'' are located in the triangular face centers of the ''6-simplex''. Rectified 6-simplex Emanuel Lodewijk Elte, E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S. It is also called 04,1 for its branching Coxeter-Dynkin diagram, shown as . Alternate names * Rectified heptapeton (Acronym: ril) (Jonathan Bowers) Coordinates The vertices of the ''rectified 6-simplex'' can be most simply positioned in 7-space as permutations of (0,0,0,0,0,1,1). This construction is based on Facet (geometry), facets of the rectified 7-orthoplex. Images Birectified 6-simplex Emanuel Lodew ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


6-simplex T1
In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices, 21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-simplex 5-faces. Its dihedral angle is cos−1(1/6), or approximately 80.41°. Alternate names It can also be called a heptapeton, or hepta-6-tope, as a 7- facetted polytope in 6-dimensions. The name ''heptapeton'' is derived from ''hepta'' for seven facets in Greek and ''-peta'' for having five-dimensional facets, and ''-on''. Jonathan Bowers gives a heptapeton the acronym hop. As a configuration This configuration matrix represents the 6-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces and 5-faces. The diagonal numbers say how many of each element occur in the whole 6-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation. \begin\begin7 & 6 & 15 & 20 & 15 & 6 \\ 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectified 6-simplex
In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a Rectification (geometry), rectification of the regular 6-simplex. There are three unique degrees of rectifications, including the zeroth, the 6-simplex itself. Vertices of the ''rectified 6-simplex'' are located at the edge-centers of the ''6-simplex''. Vertices of the ''birectified 6-simplex'' are located in the triangular face centers of the ''6-simplex''. Rectified 6-simplex Emanuel Lodewijk Elte, E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S. It is also called 04,1 for its branching Coxeter-Dynkin diagram, shown as . Alternate names * Rectified heptapeton (Acronym: ril) (Jonathan Bowers) Coordinates The vertices of the ''rectified 6-simplex'' can be most simply positioned in 7-space as permutations of (0,0,0,0,0,1,1). This construction is based on Facet (geometry), facets of the rectified 7-orthoplex. Images Birectified 6-simplex Emanuel Lodew ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectified 8-orthoplex
In eight-dimensional geometry, a rectified 8-orthoplex is a convex uniform 8-polytope, being a rectification of the regular 8-orthoplex. There are unique 8 degrees of rectifications, the zeroth being the 8-orthoplex, and the 7th and last being the 8-cube. Vertices of the rectified 8-orthoplex are located at the edge-centers of the 8-orthoplex. Vertices of the birectified 8-orthoplex are located in the triangular face centers of the 8-orthoplex. Vertices of the trirectified 8-orthoplex are located in the tetrahedral cell centers of the 8-orthoplex. Rectified 8-orthoplex The rectified 8-orthoplex has 112 vertices. These represent the root vectors of the simple Lie group D8. The vertices can be seen in 3 hyperplanes, with the 28 vertices rectified 7-simplexs cells on opposite sides, and 56 vertices of an expanded 7-simplex passing through the center. When combined with the 16 vertices of the 8-orthoplex, these vertices represent the 128 root vectors of the B8 and C8 simple Lie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Facet (geometry)
In geometry, a facet is a feature of a polyhedron, polytope, or related geometric structure, generally of dimension one less than the structure itself. More specifically: * In three-dimensional geometry, a facet of a polyhedron is any polygon whose corners are vertices of the polyhedron, and is not a ''face''. To ''facet'' a polyhedron is to find and join such facets to form the faces of a new polyhedron; this is the reciprocal process to '' stellation'' and may also be applied to higher-dimensional polytopes. * In polyhedral combinatorics and in the general theory of polytopes, a facet (or hyperface) of a polytope of dimension ''n'' is a face that has dimension ''n'' − 1. Facets may also be called (''n'' − 1)-faces. In three-dimensional geometry, they are often called "faces" without qualification. * A facet of a simplicial complex is a maximal simplex, that is a simplex that is not a face of another simplex of the complex.. For (boundary complexes of) sim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Emanuel Lodewijk Elte
Emanuel Lodewijk Elte (16 March 1881 in Amsterdam – 9 April 1943 in Sobibór) Emanuël Lodewijk Elte
at joodsmonument.nl
was a . He is noted for discovering and classifying semiregular s in dimensions four and higher. Elte's father Hartog Elte was headmaster of a school in Amsterdam. Emanuel Elte married Rebecca Stork in 1912 in Amsterdam, when he was a teacher at a high school in that city. By 1943 the family lived in
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]