HOME
*



picture info

Radial Polarisation
A beam of light has radial polarization if at every position in the beam the polarization (electric field) vector points towards the centre of the beam. In practice, an array of waveplates may be used to provide an approximation to a radially polarized beam. In this case the beam is divided into segments (eight, for example), and the average polarization vector of each segment is directed towards the beam centre. Radial polarization can be produced in a variety of ways. It is possible to use so-called q-devices to convert the polarization of a beam to a radial state. The simplest example of such devices is inhomogeneous anisotropic birefringent waveplate that performs transversally inhomogeneous polarization transformations of a wave with a uniform initial state of polarization. The other examples are liquid crystal, and metasurface q-plates. In addition, a radially polarized beam can be produced by a laser, or any collimated light source, in which the Brewster window is r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polarization (waves)
Polarization ( also polarisation) is a property applying to transverse waves that specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string ''(see image)''; for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves ( shear waves) in solids. An electromag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electric Field
An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field for a system of charged particles. Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field, one of the four fundamental interactions (also called forces) of nature. Electric fields are important in many areas of physics, and are exploited in electrical technology. In atomic physics and chemistry, for instance, the electric field is the attractive force holding the atomic nucleus and electrons together in atoms. It is also the force responsible for chemical bonding between atoms that result in molecules. The electric field is defined as a vector field that associates to each point in space the electrostatic ( Coulomb) for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Waveplate
A waveplate or retarder is an optical device that alters the polarization state of a light wave travelling through it. Two common types of waveplates are the ''half-wave plate'', which shifts the polarization direction of linearly polarized light, and the ''quarter-wave plate'', which converts linearly polarized light into circularly polarized light and vice versa. A quarter-wave plate can be used to produce elliptical polarization as well. Waveplates are constructed out of a birefringent material (such as quartz or mica, or even plastic), for which the index of refraction is different for light linearly polarized along one or the other of two certain perpendicular crystal axes. The behavior of a waveplate (that is, whether it is a half-wave plate, a quarter-wave plate, etc.) depends on the thickness of the crystal, the wavelength of light, and the variation of the index of refraction. By appropriate choice of the relationship between these parameters, it is possible to introduce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radial And Azimuthal Polarisation
Radial is a geometric term of location which may refer to: Mathematics and Direction * Vector (geometric), a line * Radius, adjective form of * Radial distance, a directional coordinate in a polar coordinate system * Radial set * A bearing from a waypoint, such as a VHF omnidirectional range Biology * Radial artery, the main artery of the lateral aspect of the forearm * Radial nerve, supplies the posterior portion of the upper limb * Radial symmetry, one of the types of distribution of body parts or shapes in biology * Radius (bone), a bone of the forearm Technology * Radial (radio), lines which radiate from a radio antenna * Radial axle, on a locomotive or carriage * Radial compressor * Radial delayed blowback * Radial engine * Radial tire * Radial, Inc., e-commerce business See also * Axial (other) * Radiate (other) Radiate may refer to: Biology * Radiata, a taxon of jellyfish and allies * Radiate carpal ligament, a group of fibrous bands in the hand ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Q-plate
A q-plate is an optical device that can form a light beam with orbital angular momentum (OAM) from a beam with well-defined spin angular momentum (SAM). Q-plates are based on the SAM-OAM coupling that may occur in media that are both anisotropic and inhomogeneous, such as an inhomogeneous anisotropic birefringent waveplate. Q-plates are also currently realized using total internal reflection devices, liquid crystals, metasurfaces based on polymers, and sub-wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ... gratings. The sign of the OAM is controlled by the input beam's polarization. References Optical components Nonlinear optics {{optics-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Waveplate
A waveplate or retarder is an optical device that alters the polarization state of a light wave travelling through it. Two common types of waveplates are the ''half-wave plate'', which shifts the polarization direction of linearly polarized light, and the ''quarter-wave plate'', which converts linearly polarized light into circularly polarized light and vice versa. A quarter-wave plate can be used to produce elliptical polarization as well. Waveplates are constructed out of a birefringent material (such as quartz or mica, or even plastic), for which the index of refraction is different for light linearly polarized along one or the other of two certain perpendicular crystal axes. The behavior of a waveplate (that is, whether it is a half-wave plate, a quarter-wave plate, etc.) depends on the thickness of the crystal, the wavelength of light, and the variation of the index of refraction. By appropriate choice of the relationship between these parameters, it is possible to introduce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Liquid Crystal
Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way. There are many types of LC phases, which can be distinguished by their optical properties (such as textures). The contrasting textures arise due to molecules within one area of material ("domain") being oriented in the same direction but different areas having different orientations. LC materials may not always be in a LC state of matter (just as water may be ice or water vapor). Liquid crystals can be divided into 3 main types: * thermotropic, * lyotropic, and * metallotropic. Thermotropic and lyotropic liquid crystals consist mostly of organic molecules, although a few minerals are also known. Thermotropic LCs exhibit a phase transition into the LC phase as temperature changes. Lyotropic LCs exhibit phase transitions as a function of b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electromagnetic Metasurface
An electromagnetic metasurface refers to a kind of artificial sheet material with sub-wavelength thickness. Metasurfaces can be either structured or unstructured with subwavelength-scaled patterns in the horizontal dimensions. In electromagnetic theory, metasurfaces modulate the behaviors of electromagnetic waves through specific boundary conditions, rather than constitutive parameters in three dimensional (3D) space, which is commonly exploited in natural materials and metamaterials. Metasurfaces may also refer to the two-dimensional counterparts of metamaterials. Definitions Metasurfaces have been defined in several ways by researchers. 1, “An alternative approach that has gained increasing attention in recent years deals with one- and two-dimensional (1D and 2D) plasmonic arrays with subwavelength periodicity, also known as metasurfaces. Due to their negligible thickness compared to the wavelength of operation, metasurfaces can (near resonances of unit cell constituents) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Q-plate
A q-plate is an optical device that can form a light beam with orbital angular momentum (OAM) from a beam with well-defined spin angular momentum (SAM). Q-plates are based on the SAM-OAM coupling that may occur in media that are both anisotropic and inhomogeneous, such as an inhomogeneous anisotropic birefringent waveplate. Q-plates are also currently realized using total internal reflection devices, liquid crystals, metasurfaces based on polymers, and sub-wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ... gratings. The sign of the OAM is controlled by the input beam's polarization. References Optical components Nonlinear optics {{optics-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The first laser was built in 1960 by Theodore H. Maiman at Hughes Research Laboratories, based on theoretical work by Charles Hard Townes and Arthur Leonard Schawlow. A laser differs from other sources of light in that it emits light which is ''coherent''. Spatial coherence allows a laser to be focused to a tight spot, enabling applications such as laser cutting and lithography. Spatial coherence also allows a laser beam to stay narrow over great distances ( collimation), enabling applications such as laser pointers and lidar (light detection and ranging). Lasers can also have high temporal coherence, which allows them to emit light with a very narrow spectrum. Alternatively, temporal coherence can be used to produce ultrashort puls ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brewster Window
Brewster's angle (also known as the polarization angle) is an angle of incidence at which light with a particular polarization is perfectly transmitted through a transparent dielectric surface, with ''no reflection''. When ''unpolarized'' light is incident at this angle, the light that is reflected from the surface is therefore perfectly polarized. This special angle of incidence is named after the Scottish physicist Sir David Brewster (1781–1868). Explanation When light encounters a boundary between two media with different refractive indices, some of it is usually reflected as shown in the figure above. The fraction that is reflected is described by the Fresnel equations, and depends on the incoming light's polarization and angle of incidence. The Fresnel equations predict that light with the ''p'' polarization (electric field polarized in the same plane as the incident ray and the surface normal at the point of incidence) will not be reflected if the angle of incidence is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]