HOME
*



picture info

Resolvent Cubic
In algebra, a resolvent cubic is one of several distinct, although related, cubic polynomials defined from a monic polynomial of degree four: :P(x)=x^4+a_3x^3+a_2x^2+a_1x+a_0. In each case: * The coefficients of the resolvent cubic can be obtained from the coefficients of using only sums, subtractions and multiplications. * Knowing the roots of the resolvent cubic of is useful for finding the roots of itself. Hence the name “resolvent cubic”. * The polynomial has a multiple root if and only if its resolvent cubic has a multiple root. Definitions Suppose that the coefficients of belong to a field whose characteristic is different from . In other words, we are working in a field in which . Whenever roots of are mentioned, they belong to some extension of such that factors into linear factors in . If is the field of rational numbers, then can be the field of complex numbers or the field of algebraic numbers. In some cases, the concept of resolvent cubic i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vieta's Formulas
In mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots. They are named after François Viète (more commonly referred to by the Latinised form of his name, "Franciscus Vieta"). Basic formulas Any general polynomial of degree ''n'' :P(x) = a_nx^n + a_x^ + \cdots + a_1 x + a_0 (with the coefficients being real or complex numbers and ) has (not necessarily distinct) complex roots by the fundamental theorem of algebra. Vieta's formulas relate the polynomial's coefficients to signed sums of products of the roots as follows: :\begin r_1 + r_2 + \dots + r_ + r_n = -\dfrac \\ (r_1 r_2 + r_1 r_3+\cdots + r_1 r_n) + (r_2r_3 + r_2r_4+\cdots + r_2r_n)+\cdots + r_r_n = \dfrac \\ \quad \vdots \\ r_1 r_2 \dots r_n = (-1)^n \dfrac. \end Vieta's formulas can equivalently be written as : \sum_ \left(\prod_^k r_\right)=(-1)^k\frac for (the indices are sorted in increasing order to ensure each product of roots is used exactly once). The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Splitting Field
In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial ''splits'', i.e., decomposes into linear factors. Definition A splitting field of a polynomial ''p''(''X'') over a field ''K'' is a field extension ''L'' of ''K'' over which ''p'' factors into linear factors :p(X) = c\prod_^ (X - a_i) where c\in K and for each i we have X - a_i \in L /math> with ''ai'' not necessarily distinct and such that the roots ''ai'' generate ''L'' over ''K''. The extension ''L'' is then an extension of minimal degree over ''K'' in which ''p'' splits. It can be shown that such splitting fields exist and are unique up to isomorphism. The amount of freedom in that isomorphism is known as the Galois group of ''p'' (if we assume it is separable). Properties An extension ''L'' which is a splitting field for a set of polynomials ''p''(''X'') over ''K'' is called a normal extension of ''K''. Given an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them. For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory. Definition Suppose that E is an extension of the field F (written as E/F and read "''E'' over ''F'' "). An automorphism of E/F is defined to be an automorphism of E that fixes F pointwise. In other words, an automorphism of E/F is an isomorphism \alpha:E\to E such that \alpha(x) = x for each x\in F. The set of all automorphisms of E/F forms a group with the operation of function composition. This group is sometimes denoted by \operatorname(E/F). If E/F is a Galois extension, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ruffini's Rule
In mathematics, Ruffini's rule is a method for computation of the Euclidean division of a polynomial by a binomial of the form ''x – r''. It was described by Paolo Ruffini in 1804. The rule is a special case of synthetic division in which the divisor is a linear factor. Algorithm The rule establishes a method for dividing the polynomial: :P(x)=a_nx^n+a_x^+\cdots+a_1x+a_0 by the binomial: :Q(x)=x-r to obtain the quotient polynomial: :R(x)=b_x^+b_x^+\cdots+b_1x+b_0. The algorithm is in fact the long division of ''P''(''x'') by ''Q''(''x''). To divide ''P''(''x'') by ''Q''(''x''): # Take the coefficients of ''P''(''x'') and write them down in order. Then, write ''r'' at the bottom-left edge just over the line: #: \begin & a_n & a_ & \dots & a_1 & a_0\\ r & & & & & \\ \hline & & & & & \\ \end # Pass the leftmost coefficient (''a''''n'') to the bottom just under the line. #: \begin & a_n & a_ & \dots & a_1 & a_0\\ r & & & & & \\ \hline & a_n & & & & \\ & =b_ & & & & \end # M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polynomial Long Division
In algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalized version of the familiar arithmetic technique called long division. It can be done easily by hand, because it separates an otherwise complex division problem into smaller ones. Sometimes using a shorthand version called synthetic division is faster, with less writing and fewer calculations. Another abbreviated method is polynomial short division (Blomqvist's method). Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials ''A'' (the ''dividend'') and ''B'' (the ''divisor'') produces, if ''B'' is not zero, a ''quotient'' ''Q'' and a ''remainder'' ''R'' such that :''A'' = ''BQ'' + ''R'', and either ''R'' = 0 or the degree of ''R'' is lower than the degree of ''B''. These conditions uniquely define ''Q'' and ''R'', which means that ''Q'' and ''R'' do not depend on the m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Root Theorem
In algebra, the rational root theorem (or rational root test, rational zero theorem, rational zero test or theorem) states a constraint on rational solutions of a polynomial equation :a_nx^n+a_x^+\cdots+a_0 = 0 with integer coefficients a_i\in\mathbb and a_0,a_n \neq 0. Solutions of the equation are also called roots or zeroes of the polynomial on the left side. The theorem states that each rational solution , written in lowest terms so that and are relatively prime, satisfies: * is an integer factor of the constant term , and * is an integer factor of the leading coefficient . The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is the special case of the rational root theorem when the leading coefficient is . Application The theorem is used to find all rational roots of a polynomial, if any. It gives a finite number of possible fractions which can be checked to see ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of ax ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real Closed Field
In mathematics, a real closed field is a field ''F'' that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. Definitions A real closed field is a field ''F'' in which any of the following equivalent conditions is true: #''F'' is elementarily equivalent to the real numbers. In other words, it has the same first-order properties as the reals: any sentence in the first-order language of fields is true in ''F'' if and only if it is true in the reals. #There is a total order on ''F'' making it an ordered field such that, in this ordering, every positive element of ''F'' has a square root in ''F'' and any polynomial of odd degree with coefficients in ''F'' has at least one root in ''F''. #''F'' is a formally real field such that every polynomial of odd degree with coefficients in ''F'' has at least one root in ''F'', and for every element ''a'' of ''F'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intermediate Value Theorem
In mathematical analysis, the intermediate value theorem states that if f is a continuous function whose domain contains the interval , then it takes on any given value between f(a) and f(b) at some point within the interval. This has two important corollaries: # If a continuous function has values of opposite sign inside an interval, then it has a root in that interval (Bolzano's theorem). # The image of a continuous function over an interval is itself an interval. Motivation This captures an intuitive property of continuous functions over the real numbers: given ''f'' continuous on ,2/math> with the known values f(1) = 3 and f(2) = 5, then the graph of y = f(x) must pass through the horizontal line y = 4 while x moves from 1 to 2. It represents the idea that the graph of a continuous function on a closed interval can be drawn without lifting a pencil from the paper. Theorem The intermediate value theorem states the following: Consider an interval I = ,b/math> of real n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Without Loss Of Generality
''Without loss of generality'' (often abbreviated to WOLOG, WLOG or w.l.o.g.; less commonly stated as ''without any loss of generality'' or ''with no loss of generality'') is a frequently used expression in mathematics. The term is used to indicate the assumption that follows is chosen arbitrarily, narrowing the premise to a particular case, but does not affect the validity of the proof in general. The other cases are sufficiently similar to the one presented that proving them follows by essentially the same logic. As a result, once a proof is given for the particular case, it is trivial to adapt it to prove the conclusion in all other cases. In many scenarios, the use of "without loss of generality" is made possible by the presence of symmetry. For example, if some property ''P''(''x'',''y'') of real numbers is known to be symmetric in ''x'' and ''y'', namely that ''P''(''x'',''y'') is equivalent to ''P''(''y'',''x''), then in proving that ''P''(''x'',''y'') holds for every ''x'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Third Definition
Third or 3rd may refer to: Numbers * 3rd, the ordinal form of the cardinal number 3 * , a fraction of one third * 1⁄60 of a ''second'', or 1⁄3600 of a ''minute'' Places * 3rd Street (other) * Third Avenue (other) * Highway 3 Music Music theory *Interval number of three in a musical interval **major third, a third spanning four semitones **minor third, a third encompassing three half steps, or semitones **neutral third, wider than a minor third but narrower than a major third ** augmented third, an interval of five semitones **diminished third, produced by narrowing a minor third by a chromatic semitone *Third (chord), chord member a third above the root *Degree (music), three away from tonic ** mediant, third degree of the diatonic scale **submediant, sixth degree of the diatonic scale – three steps below the tonic **chromatic mediant, chromatic relationship by thirds * Ladder of thirds, similar to the circle of fifths Albums *''Third/Sister Lovers'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]