Recursively Isomorphic
   HOME





Recursively Isomorphic
In computability theory two sets A, B of natural numbers are computably isomorphic or recursively isomorphic if there exists a total computable and bijective In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ... function f \colon \N \to \N such that the image of f restricted to A\subseteq \N equals B\subseteq \N, i.e. f(A) = B. Further, two numberings \nu and \mu are called computably isomorphic if there exists a computable bijection f so that \nu = \mu \circ f. Computably isomorphic numberings induce the same notion of computability on a set. Theorems By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility.Theorem 7.VI, Hartley Rogers, Jr., ''Theory of recursive functions and effective computability'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computability Theory (computer Science)
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definable set, definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory. Basic questions addressed by computability theory include: * What does it mean for a function (mathematics), function on the natural numbers to be computable? * How can noncomputable functions be classified into a hierarchy based on their level of noncomputability? Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of computational complexity theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Function
In mathematics, a partial function from a set to a set is a function from a subset of (possibly the whole itself) to . The subset , that is, the '' domain'' of viewed as a function, is called the domain of definition or natural domain of . If equals , that is, if is defined on every element in , then is said to be a total function. In other words, a partial function is a binary relation over two sets that associates to every element of the first set ''at most'' one element of the second set; it is thus a univalent relation. This generalizes the concept of a (total) function by not requiring ''every'' element of the first set to be associated to an element of the second set. A partial function is often used when its exact domain of definition is not known, or is difficult to specify. However, even when the exact domain of definition is known, partial functions are often used for simplicity or brevity. This is the case in calculus, where, for example, the quotient ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computable
Computability is the ability to solve a problem by an effective procedure. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is closely linked to the existence of an algorithm to solve the problem. The most widely studied models of computability are the Turing-computable and μ-recursive functions, and the lambda calculus, all of which have computationally equivalent power. Other forms of computability are studied as well: computability notions weaker than Turing machines are studied in automata theory, while computability notions stronger than Turing machines are studied in the field of hypercomputation. Problems A central idea in computability is that of a (computational) computational problem, problem, which is a task whose computability can be explored. There are two key types of problems: * A decision problem fixes a set ''S'', which may be a set of string ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bijective
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equivalently, a bijection is a relation between two sets such that each element of either set is paired with exactly one element of the other set. A function is bijective if it is invertible; that is, a function f:X\to Y is bijective if and only if there is a function g:Y\to X, the ''inverse'' of , such that each of the two ways for composing the two functions produces an identity function: g(f(x)) = x for each x in X and f(g(y)) = y for each y in Y. For example, the ''multiplication by two'' defines a bijection from the integers to the even numbers, which has the ''division by two'' as its inverse function. A function is bijective if and only if it is both injective (or ''one-to-one'')—meaning that each element in the codomain is mappe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Numbering (computability Theory)
There are many different numbering schemes for assigning nominal numbers to entities. These generally require an agreed set of rules, or a central coordinator. The schemes can be considered to be examples of a primary key of a database management system table, whose table definitions require a database design. In computability theory, the simplest numbering scheme is the assignment of natural numbers to a set of objects such as functions, rational numbers, graphs, or words in some formal language. A numbering can be used to transfer the idea of computability and related concepts, which are originally defined on the natural numbers using computable functions, to these different types of objects. A simple extension is to assign cardinal numbers to physical objects according to the choice of some base of reference and of measurement units for counting or measuring these objects within a given precision. In such case, numbering is a kind of classification, i.e. assigning a numeric pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Myhill Isomorphism Theorem
In computability theory the Myhill isomorphism theorem, named after John Myhill, provides a characterization for two numberings to induce the same notion of computability on a set. It is reminiscent of the Schröder–Bernstein theorem in set theory and has been called a constructive version of it. Theorem A many-one reduction from a set A \subseteq \mathbb to a set B \subseteq \mathbb is a total computable function f : \mathbb \to \mathbb such that \forall x \in \mathbb, x \in A \iff f(x) \in B. A one-one reduction is an injective reduction, and a computable isomorphism is a bijective reduction. Myhill's isomorphism theorem: Two sets A, B \subseteq \mathbb are computably isomorphic if and only if ''A'' is one-one-reducible to ''B'' and ''B'' is one-one-reducible to ''A''. As a corollary, two total numberings are one-equivalent if and only if they are recursively isomorphic. Myhill–Shepherdson theorem The Myhill–Shepherdson theorem, stemming from the Rice–Shapiro t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Many-one Reduction
In computability theory and computational complexity theory, a many-one reduction (also called mapping reduction) is a reduction that converts instances of one decision problem (whether an instance is in L_1) to another decision problem (whether an instance is in L_2) using a computable function. The reduced instance is in the language L_2 if and only if the initial instance is in its language L_1. Thus if we can decide whether L_2 instances are in the language L_2, we can decide whether L_1 instances are in the language L_1 by applying the reduction and solving for L_2. Thus, reductions can be used to measure the relative computational difficulty of two problems. It is said that L_1 reduces to L_2 if, in layman's terms L_2 is at least as hard to solve as L_1. This means that any algorithm that solves L_2 can also be used as part of a (otherwise relatively simple) program that solves L_1. Many-one reductions are a special case and stronger form of Turing reductions. With many-one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]