HOME



picture info

Rank–nullity Theorem
The rank–nullity theorem is a theorem in linear algebra, which asserts: * the number of columns of a matrix is the sum of the rank of and the nullity of ; and * the dimension of the domain of a linear transformation is the sum of the rank of (the dimension of the image of ) and the nullity of (the dimension of the kernel of ). p. 70, §2.1, Theorem 2.3 It follows that for linear transformations of vector spaces of equal finite dimension, either injectivity or surjectivity implies bijectivity. Stating the theorem Linear transformations Let T : V \to W be a linear transformation between two vector spaces where T's domain V is finite dimensional. Then \operatorname(T) ~+~ \operatorname(T) ~=~ \dim V, where \operatorname(T) is the rank of T (the dimension of its image) and \operatorname(T) is the nullity of T (the dimension of its kernel). In other words, \dim (\operatorname T) + \dim (\operatorname T) = \dim (\operatorname(T)). This theorem can be refined via th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (: matrices) is a rectangle, rectangular array or table of numbers, symbol (formal), symbols, or expression (mathematics), expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two-by-three matrix", a " matrix", or a matrix of dimension . Matrices are commonly used in linear algebra, where they represent linear maps. In geometry, matrices are widely used for specifying and representing geometric transformations (for example rotation (mathematics), rotations) and coordinate changes. In numerical analysis, many computational problems are solved by reducing them to a matrix computation, and this often involves computing with matrices of huge dimensions. Matrices are used in most areas of mathematics and scientific fields, either directly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quotient Space (linear Algebra)
In linear algebra, the quotient of a vector space V by a subspace N is a vector space obtained by "collapsing" N to zero. The space obtained is called a quotient space and is denoted V/N (read "V mod N" or "V by N"). Definition Formally, the construction is as follows. Let V be a vector space over a field \mathbb, and let N be a subspace of V. We define an equivalence relation \sim on V by stating that x \sim y iff . That is, x is related to y if and only if one can be obtained from the other by adding an element of N. This definition implies that any element of N is related to the zero vector; more precisely, all the vectors in N get mapped into the equivalence class of the zero vector. The equivalence class – or, in this case, the coset – of x is defined as : := \ and is often denoted using the shorthand = x + N. The quotient space V/N is then defined as V/_\sim, the set of all equivalence classes induced by \sim on V. Scalar multiplication and addition are defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cokernel
The cokernel of a linear mapping of vector spaces is the quotient space of the codomain of by the image of . The dimension of the cokernel is called the ''corank'' of . Cokernels are dual to the kernels of category theory, hence the name: the kernel is a subobject of the domain (it maps to the domain), while the cokernel is a quotient object of the codomain (it maps from the codomain). Intuitively, given an equation that one is seeking to solve, the cokernel measures the ''constraints'' that must satisfy for this equation to have a solution – the obstructions to a solution – while the kernel measures the ''degrees of freedom'' in a solution, if one exists. This is elaborated in intuition, below. More generally, the cokernel of a morphism in some category (e.g. a homomorphism between groups or a bounded linear operator between Hilbert spaces) is an object and a morphism such that the composition is the zero morphism of the category, and furthermore is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kernel (linear Algebra)
In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain. That is, given a linear map between two vector spaces and , the kernel of is the vector space of all elements of such that , where denotes the zero vector in , or more symbolically: \ker(L) = \left\ = L^(\mathbf). Properties The kernel of is a linear subspace of the domain .Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in , , and Strang's lectures. In the linear map L : V \to W, two elements of have the same image in if and only if their difference lies in the kernel of , that is, L\left(\mathbf_1\right) = L\left(\mathbf_2\right) \quad \text \quad L\left(\mathbf_1-\mathbf_2\right) = \mathbf. From this, it follows ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Combination
In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' and ''y'' would be any expression of the form ''ax'' + ''by'', where ''a'' and ''b'' are constants). The concept of linear combinations is central to linear algebra and related fields of mathematics. Most of this article deals with linear combinations in the context of a vector space over a field (mathematics), field, with some generalizations given at the end of the article. Definition Let ''V'' be a vector space over the field ''K''. As usual, we call elements of ''V'' ''vector space, vectors'' and call elements of ''K'' ''scalar (mathematics), scalars''. If v1,...,v''n'' are vectors and ''a''1,...,''a''''n'' are scalars, then the ''linear combination of those vectors with those scalars as coefficients'' is :a_1 \mathbf v_1 + a_2 \mathbf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identity Matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the object remains unchanged by the transformation. In other contexts, it is analogous to multiplying by the number 1. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial or can be trivially determined by the context. I_1 = \begin 1 \end ,\ I_2 = \begin 1 & 0 \\ 0 & 1 \end ,\ I_3 = \begin 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end ,\ \dots ,\ I_n = \begin 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end. The term unit matrix has also been widely used, but the term ''identity matrix'' is now standard. The term ''unit matrix'' is ambiguous, because it is also used for a matrix of on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rank Factorization
A rank is a position in a hierarchy. It can be formally recognized—for example, cardinal, chief executive officer, general, professor—or unofficial. People Formal ranks * Academic rank * Corporate title * Diplomatic rank * Hierarchy of the Catholic Church * Imperial, royal and noble ranks * Military rank * Police rank Unofficial ranks * Social class * Social position * Social status Either * Seniority Mathematics * Rank (differential topology) * Rank (graph theory) * Rank (linear algebra), the dimension of the vector space generated (or spanned) by a matrix's columns * Rank (set theory) * Rank (type theory) * Rank of an abelian group, the cardinality of a maximal linearly independent subset * Rank of a free module * Rank of a greedoid, the maximal size of a feasible set * Rank of a group, the smallest cardinality of a generating set for the group * Rank of a Lie group – see Cartan subgroup * Rank of a matroid, the maximal size of an independent set * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Basis (linear Algebra)
In mathematics, a Set (mathematics), set of elements of a vector space is called a basis (: bases) if every element of can be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to . The elements of a basis are called . Equivalently, a set is a basis if its elements are linearly independent and every element of is a linear combination of elements of . In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the dimension (vector space), dimension of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Basis vectors find applications in the study of crystal structures and frame of reference, frames of reference. De ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Steinitz Exchange Lemma
The Steinitz exchange lemma is a basic theorem in linear algebra used, for example, to show that any two bases for a finite- dimensional vector space have the same number of elements. The result is named after the German mathematician Ernst Steinitz. The result is often called the Steinitz–Mac Lane exchange lemma, also recognizing the generalization by Saunders Mac Lane of Steinitz's lemma to matroids. Statement Let U and W be finite subsets of a vector space V. If U is a set of linearly independent vectors, and W spans V, then: 1. , U, \leq , W, ; 2. There is a set W' \subseteq W with , W', =, W, -, U, such that U \cup W' spans V. Proof Suppose U=\ and W=\. We wish to show that m \le n, and that after rearranging the w_j if necessary, the set \ spans V. We proceed by induction on m. For the base case, suppose m is zero. In this case, the claim holds because there are no vectors u_i, and the set \ spans V by hypothesis. For the inductive step, assume the proposi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]