HOME
*





Randomized Rounding
Within computer science and operations research, many combinatorial optimization problems are computationally intractable to solve exactly (to optimality). Many such problems do admit fast (polynomial time) approximation algorithms—that is, algorithms that are guaranteed to return an approximately optimal solution given any input. Randomized rounding is a widely used approach for designing and analyzing such approximation algorithms. The basic idea is to use the probabilistic method to convert an optimal solution of a relaxation of the problem into an approximately optimal solution to the original problem. Overview The basic approach has three steps: # Formulate the problem to be solved as an integer linear program (ILP). # Compute an optimal fractional solution x to the linear programming relaxation (LP) of the ILP. # Round the fractional solution x of the LP to an integer solution x' of the ILP. (Although the approach is most commonly applied with linear programs, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Programming Relaxation
In mathematics, the relaxation of a (mixed) integer linear program is the problem that arises by removing the integrality constraint of each variable. For example, in a 0–1 integer program, all constraints are of the form :x_i\in\. The relaxation of the original integer program instead uses a collection of linear constraints :0 \le x_i \le 1. The resulting relaxation is a linear program, hence the name. This relaxation technique transforms an NP-hard optimization problem (integer programming) into a related problem that is solvable in polynomial time (linear programming); the solution to the relaxed linear program can be used to gain information about the solution to the original integer program. Example Consider the set cover problem, the linear programming relaxation of which was first considered by . In this problem, one is given as input a family of sets ''F'' = ; the task is to find a subfamily, with as few sets as possible, having the same union as ''F''. To formulate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Programming Relaxation
In mathematics, the relaxation of a (mixed) integer linear program is the problem that arises by removing the integrality constraint of each variable. For example, in a 0–1 integer program, all constraints are of the form :x_i\in\. The relaxation of the original integer program instead uses a collection of linear constraints :0 \le x_i \le 1. The resulting relaxation is a linear program, hence the name. This relaxation technique transforms an NP-hard optimization problem (integer programming) into a related problem that is solvable in polynomial time (linear programming); the solution to the relaxed linear program can be used to gain information about the solution to the original integer program. Example Consider the set cover problem, the linear programming relaxation of which was first considered by . In this problem, one is given as input a family of sets ''F'' = ; the task is to find a subfamily, with as few sets as possible, having the same union as ''F''. To formulate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semidefinite Programming
Semidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization of a linear objective function (a user-specified function that the user wants to minimize or maximize) over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron. Semidefinite programming is a relatively new field of optimization which is of growing interest for several reasons. Many practical problems in operations research and combinatorial optimization can be modeled or approximated as semidefinite programming problems. In automatic control theory, SDPs are used in the context of linear matrix inequalities. SDPs are in fact a special case of cone programming and can be efficiently solved by interior point methods. All linear programs and (convex) quadratic programs can be expressed as SDPs, and via hierarchies of SDPs the solutions of polynomial optimization problems can be approximated. Semidefinite programming has been use ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semidefinite Programming
Semidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization of a linear objective function (a user-specified function that the user wants to minimize or maximize) over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron. Semidefinite programming is a relatively new field of optimization which is of growing interest for several reasons. Many practical problems in operations research and combinatorial optimization can be modeled or approximated as semidefinite programming problems. In automatic control theory, SDPs are used in the context of linear matrix inequalities. SDPs are in fact a special case of cone programming and can be efficiently solved by interior point methods. All linear programs and (convex) quadratic programs can be expressed as SDPs, and via hierarchies of SDPs the solutions of polynomial optimization problems can be approximated. Semidefinite programming has been use ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Probabilistic Method
The probabilistic method is a nonconstructive method, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a prescribed kind of mathematical object. It works by showing that if one randomly chooses objects from a specified class, the probability that the result is of the prescribed kind is strictly greater than zero. Although the proof uses probability, the final conclusion is determined for ''certain'', without any possible error. This method has now been applied to other areas of mathematics such as number theory, linear algebra, and real analysis, as well as in computer science (e.g. randomized rounding), and information theory. Introduction If every object in a collection of objects fails to have a certain property, then the probability that a random object chosen from the collection has that property is zero. Similarly, showing that the probability is (strictly) less than 1 can be used to prove the existence of an object that does ''not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Turán's Theorem
In graph theory, Turán's theorem bounds the number of edges that can be included in an undirected graph that does not have a complete subgraph of a given size. It is one of the central results of extremal graph theory, an area studying the largest or smallest graphs with given properties, and is a special case of the forbidden subgraph problem on the maximum number of edges in a graph that does not have a given subgraph. An example of an n-vertex graph that does not contain any (r+1)-vertex clique K_ may be formed by partitioning the set of n vertices into r parts of equal or nearly equal size, and connecting two vertices by an edge whenever they belong to two different parts. The resulting graph is the Turán graph T(n,r). Turán's theorem states that the Turán graph has the largest number of edges among all -free -vertex graphs. Turán's theorem, and the Turán graphs giving its extreme case, were first described and studied by Hungarian mathematician Pál Turán in 1941. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph (discrete Mathematics)
In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a Set (mathematics), set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. Graphs are one of the objects of study in discrete mathematics. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Independent Set (graph Theory)
In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set S of vertices such that for every two vertices in S, there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in S. A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening. A maximal independent set is an independent set that is not a proper subset of any other independent set. A maximum independent set is an independent set of largest possible size for a given graph G. This size is called the independence number of ''G'' and is usually denoted by \alpha(G). The optimization problem of finding such a set is called the maximum independent set problem. It is a strongly NP-hard problem. As such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a Heuristic (computer science), heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Method Of Conditional Probabilities
In mathematics and computer science, the probabilistic method is used to prove the existence of mathematical objects with desired combinatorial properties. The proofs are probabilistic — they work by showing that a random object, chosen from some probability distribution, has the desired properties with positive probability. Consequently, they are nonconstructive — they don't explicitly describe an efficient method for computing the desired objects. The method of conditional probabilities , converts such a proof, in a "very precise sense", into an efficient deterministic algorithm, one that is guaranteed to compute an object with the desired properties. That is, the method derandomizes the proof. The basic idea is to replace each random choice in a random experiment by a deterministic choice, so as to keep the conditional probability of failure, given the choices so far, below 1. The method is particularly relevant in the context of randomized rounding (which uses the probab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Set Cover
The set cover problem is a classical question in combinatorics, computer science, operations research, and complexity theory. It is one of Karp's 21 NP-complete problems shown to be NP-complete in 1972. Given a set of elements (called the universe) and a collection of sets whose union equals the universe, the set cover problem is to identify the smallest sub-collection of whose union equals the universe. For example, consider the universe and the collection of sets Clearly the union of is . However, we can cover all of the elements with the following, smaller number of sets: More formally, given a universe \mathcal and a family \mathcal of subsets of \mathcal, a ''cover'' is a subfamily \mathcal\subseteq\mathcal of sets whose union is \mathcal. In the set covering decision problem, the input is a pair (\mathcal,\mathcal) and an integer k; the question is whether there is a set covering of size k or less. In the set covering optimization problem, the input is a pair (\ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]