Quotition And Partition
   HOME
*





Quotition And Partition
In arithmetic, quotition and partition are two ways of viewing fractions and division. In quotition division one asks, "how many parts are there?"; While in partition division one asks, "what is the size of each part?". For example, the expression is : 6 \div 2 and it can be constructed of either two ways: * "How many parts of the size of 2 must be added to get the amount of 6?" (Quotition division) : One can write :: 6 = \underbrace_. : Since it takes 3 parts, the conclusion is that :: 6 \div 2 = 3. * "What is the size of 2 equal parts whose sum is that of 6?". (Partition division) : One can write :: 6 = \underbrace_. : Since the size of each part is 3, the conclusion is that :: 6 \div 2 = 3. It is a fact of elementary theoretical mathematics that the numerical answer is always the same no matter which way you put it,  6 ÷ 2 = 3. This is essentially equivalent to the commutativity of multiplication in multiplication arithmetic. Division in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arithmetic
Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th century, Italian mathematician Giuseppe Peano formalized arithmetic with his Peano axioms, which are highly important to the field of mathematical logic today. History The prehistory of arithmetic is limited to a small number of artifacts, which may indicate the conception of addition and subtraction, the best-known being the Ishango bone from central Africa, dating from somewhere between 20,000 and 18,000 BC, although its interpretation is disputed. The earliest written records indicate the Egyptians and Babylonians used all the elementary arithmetic operations: addition, subtraction, multiplication, and division, as early as 2000 BC. These artifacts do not always reveal the specific process used for solving problems, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Law
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as ''noncommutative operations''. The idea that simple operations, such as the multiplication and addition of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized. A similar property exists for binary relations; a binary relation is said to be symmetric if the relation applies regardless of the order of its operands; for example, equality is sym ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiplication
Multiplication (often denoted by the Multiplication sign, cross symbol , by the mid-line #Notation and terminology, dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four Elementary arithmetic, elementary Operation (mathematics), mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''product (mathematics), product''. The multiplication of Natural number, whole numbers may be thought of as Multiplication and repeated addition, repeated addition; that is, the multiplication of two numbers is equivalent to adding as many copies of one of them, the ''multiplicand'', as the quantity of the other one, the ''multiplier''. Both numbers can be referred to as ''factors''. :a\times b = \underbrace_ For example, 4 multiplied by 3, often written as 3 \times 4 and spoken as "3 times 4", can be calculated by adding 3 copies of 4 t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Division (mathematics)
Division is one of the four basic operations of arithmetic, the ways that numbers are combined to make new numbers. The other operations are addition, subtraction, and multiplication. At an elementary level the division of two natural numbers is, among other possible interpretations, the process of calculating the number of times one number is contained within another. This number of times need not be an integer. For example, if 20 apples are divided evenly between 4 people, everyone receives 5 apples (see picture). The division with remainder or Euclidean division of two natural numbers provides an integer ''quotient'', which is the number of times the second number is completely contained in the first number, and a ''remainder'', which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of the second number can be allocated. For example, if 21 apples are divided between 4 people, everyone receives 5 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Partition Topics
Generally, a partition is a division of a whole into non-overlapping parts. Among the kinds of partitions considered in mathematics are * partition of a set or an ordered partition of a set, * partition of a graph, * partition of an integer, * partition of an interval, * partition of unity, * partition of a matrix; see block matrix, and * partition of the sum of squares in statistics problems, especially in the analysis of variance, * quotition and partition, two ways of viewing the operation of division of integers. Integer partitions * Composition (number theory) * Ewens's sampling formula * Ferrers graph * Glaisher's theorem * Landau's function * Partition function (number theory) * Pentagonal number theorem * Plane partition * Quotition and partition * Rank of a partition ** Crank of a partition * Solid partition * Young tableau * Young's lattice Set partitions {{main, Partition of a set * Bell number * Bell polynom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ratio
In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ratio 4:3). Similarly, the ratio of lemons to oranges is 6:8 (or 3:4) and the ratio of oranges to the total amount of fruit is 8:14 (or 4:7). The numbers in a ratio may be quantities of any kind, such as counts of people or objects, or such as measurements of lengths, weights, time, etc. In most contexts, both numbers are restricted to be positive. A ratio may be specified either by giving both constituting numbers, written as "''a'' to ''b''" or "''a'':''b''", or by giving just the value of their quotient Equal quotients correspond to equal ratios. Consequently, a ratio may be considered as an ordered pair of numbers, a fraction with the first number in the numerator and the second in the denominator, or as the value denoted by this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integers
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface , or blackboard bold \mathbb. A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real number that is not rational is called irrational. Irrational numbers include , , , and . Since the set of rational numbers is countable, and the set of real numbers is uncou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]