Quasi-coherent Sheaf On An Algebraic Stack
   HOME
*





Quasi-coherent Sheaf On An Algebraic Stack
In algebraic geometry, a quasi-coherent sheaf on an algebraic stack \mathfrak is a generalization of a quasi-coherent sheaf on a scheme. The most concrete description is that it is a data that consists of, for each a scheme ''S'' in the base category and \xi in \mathfrak(S), a quasi-coherent sheaf F_ on ''S'' together with maps implementing the compatibility conditions among F_'s. For a Deligne–Mumford stack, there is a simpler description in terms of a presentation U \to \mathfrak: a quasi-coherent sheaf on \mathfrak is one obtained by descending a quasi-coherent sheaf on ''U''. A quasi-coherent sheaf on a Deligne–Mumford stack generalizes an orbibundle (in a sense). Constructible sheaves (e.g., as ℓ-adic sheaves) can also be defined on an algebraic stack and they appear as coefficients of cohomology of a stack. Definition The following definition is Let \mathfrak be a category fibered in groupoids over the category of schemes of finite type over a field with the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Stack
In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves \mathcal_ and the moduli stack of elliptic curves. Originally, they were introduced by Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. But, through many generalizations the notion of algebraic stacks was finally discovered by Michael Artin. Definition Motivation One of the motivating examples of an algebraic stack is to consider a groupoid scheme (R,U,s,t,m) over a fixed scheme S. For example, if R = \mu_n\times_S\mathbb^n_S (where \mu_n is the group scheme of roots of unity), U = \mathbb^n_S, s = \text_U is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Groupoid
In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: *''Group'' with a partial function replacing the binary operation; *''Category'' in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called ''inverse'' by analogy with group theory. A groupoid where there is only one object is a usual group. In the presence of dependent typing, a category in general can be viewed as a typed monoid, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed g:A \rightarrow B, h:B \rightarrow C, say. Composition is then a total function: \circ : (B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C , so that h \circ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hopf Algebroid
In mathematics, in the theory of Hopf algebras, a Hopf algebroid is a generalisation of weak Hopf algebras, certain skew Hopf algebras and commutative Hopf ''k''-algebroids. If ''k'' is a field, a commutative ''k''-algebroid is a cogroupoid object in the category of ''k''-algebras; the category of such is hence dual to the category of groupoid ''k''-schemes. This commutative version has been used in 1970-s in algebraic geometry and stable homotopy theory. The generalization of Hopf algebroids and its main part of the structure, associative bialgebroids, to the noncommutative base algebra was introduced by J.-H. Lu in 1996 as a result on work on groupoids in Poisson geometry (later shown equivalent in nontrivial way to a construction of Takeuchi from the 1970s and another by Xu around the year 2000). They may be loosely thought of as Hopf algebras over a noncommutative base ring, where weak Hopf algebras become Hopf algebras over a separable algebra. It is a theorem that a Hopf a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moduli Stack Of Algebraic Curves
In algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on the restrictions applied to the classes of algebraic curves considered, the corresponding moduli problem and the moduli space is different. One also distinguishes between fine and coarse moduli spaces for the same moduli problem. The most basic problem is that of moduli of smooth complete curves of a fixed genus. Over the field of complex numbers these correspond precisely to compact Riemann surfaces of the given genus, for which Bernhard Riemann proved the first results about moduli spaces, in particular their dimensions ("number of parameters on which the complex structure depends"). Moduli stacks of stable curves The moduli stack \mathcal_ classifies families of smooth projective curves, together with their isomorphisms. When g > 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hodge Bundle
In mathematics, the Hodge bundle, named after W. V. D. Hodge, appears in the study of families of curves, where it provides an invariant in the moduli theory of algebraic curves. Furthermore, it has applications to the theory of modular forms on reductive algebraic groups and string theory. Definition Let \mathcal_g be the moduli space of algebraic curves of genus ''g'' curves over some scheme. The Hodge bundle \Lambda_g is a vector bundleHere, "vector bundle" in the sense of quasi-coherent sheaf on an algebraic stack on \mathcal_g whose fiber at a point ''C'' in \mathcal_g is the space of holomorphic differentials on the curve ''C''. To define the Hodge bundle, let \pi\colon \mathcal_g\rightarrow\mathcal_g be the universal algebraic curve of genus ''g'' and let \omega_g be its relative dualizing sheaf. The Hodge bundle is the pushforward The notion of pushforward in mathematics is "dual" to the notion of pullback, and can mean a number of different but closely related things. * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivariant Sheaf
In mathematics, given an action \sigma: G \times_S X \to X of a group scheme ''G'' on a scheme ''X'' over a base scheme ''S'', an equivariant sheaf ''F'' on ''X'' is a sheaf of \mathcal_X-modules together with the isomorphism of \mathcal_-modules :\phi: \sigma^* F \xrightarrow p_2^*F   that satisfies the cocycle condition: writing ''m'' for multiplication, :p_^* \phi \circ (1_G \times \sigma)^* \phi = (m \times 1_X)^* \phi. Notes on the definition On the stalk level, the cocycle condition says that the isomorphism F_ \simeq F_x is the same as the composition F_ \simeq F_ \simeq F_x; i.e., the associativity of the group action. The condition that the unit of the group acts as the identity is also a consequence: apply (e \times e \times 1)^*, e: S \to G to both sides to get (e \times 1)^* \phi \circ (e \times 1)^* \phi = (e \times 1)^* \phi and so (e \times 1)^* \phi is the identity. Note that \phi is an additional data; it is "a lift" of the action of ''G'' on ''X'' to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fibered Category
Fibred categories (or fibered categories) are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which ''inverse images'' (or ''pull-backs'') of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space ''X'' to another topological space ''Y'' is associated the pullback functor taking bundles on ''Y'' to bundles on ''X''. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories (over a site) with "descent". Fibrations also play an important role in categorical semantics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-coherent Sheaf
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an abelian category, and so they are closed under operations such as taking kernels, images, and cokernels. The quasi-coherent sheaves are a generalization of coherent sheaves and include the locally free sheaves of infinite rank. Coherent sheaf cohomology is a powerful technique, in particular for studying the sections of a given coherent sheaf. Definitions A quasi-coherent sheaf on a ringed space (X, \mathcal O_X) is a sheaf \mathcal F of \mathcal O_X-modules which has a local presentation, that is, every point in X has an open neighborhood U in which there is an ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cohomology Of A Stack
In algebraic geometry, the cohomology of a stack is a generalization of étale cohomology. In a sense, it is a theory that is coarser than the Chow group of a stack. The cohomology of a quotient stack (e.g., classifying stack) can be thought of as an algebraic counterpart of equivariant cohomology. For example, Borel's theorem states that the cohomology ring of a classifying stack In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack. T ... is a polynomial ring. See also * l-adic sheaf * smooth topology References * {{algebraic-geometry-stub Algebraic geometry Cohomology theories ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


L-adic Sheaf
In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two -adic numbers are considered to be close when their difference is divisible by a high power of : the higher the power, the closer they are. This property enables -adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles. These numbers were first described by Kurt Hensel in 1897, though, with hindsight, some of Ernst Kummer's earlier work can be interpreted as implicitly using -adic numbers.Translator's introductionpage 35 "Indeed, with hindsight it becomes apparent that a discret ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]