Quantum Informatics
   HOME
*





Quantum Informatics
Quantum information science is an interdisciplinary field that seeks to understand the analysis, processing, and transmission of information using quantum mechanics principles. It combines the study of Information science with quantum effects in physics. It includes theoretical issues in computational models and more experimental topics in quantum physics, including what can and cannot be done with quantum information. The term quantum information theory is also used, but it fails to encompass experimental research, and can be confused with a subfield of quantum information science that addresses the processing of quantum information. Scientific and engineering studies To understand quantum teleportation, quantum entanglement and the manufacturing of quantum computer hardware requires a thorough understanding of quantum physics and engineering. Since 2010s, there has been remarkable progress in manufacturing quantum computers, with companies like Google and IBM investing heavily ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Q Sharp
Q# (pronounced as ''Q sharp'') is a domain-specific programming language used for expressing quantum algorithms. It was initially released to the public by Microsoft as part of the Quantum Development Kit. History Historically, Microsoft Research had two teams interested in quantum computing, the QuArC team based in Redmond, directed by Krysta Svore, that explored the construction of quantum circuitry, and Station Q initially located in Santa Barbara and directed by Michael Freedman, that explored topological quantum computing. During a Microsoft Ignite Keynote on September 26, 2017, Microsoft announced that they were going to release a new programming language geared specifically towards quantum computers. On December 11, 2017, Microsoft released Q# as a part of the Quantum Development Kit. At Build 2019, Microsoft announced that it is open-sourcing the Quantum Development Kit, including its Q# compilers and simulators. Bettina Heim currently leads the Q# language developme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Glossary Of Quantum Computing
This glossary of quantum computing is a list of definitions of terms and concepts used in quantum computing, its sub-disciplines, and related fields. Notes References Further reading Textbooks * * * * * * * * * * * * * * * * * * Academic papers

* * * * Table 1 lists switching and dephasing times for various systems. * * * * {{Glossaries of science and engineering Models of computation Quantum cryptography Information theory Computational complexity theory Classes of computers Theoretical computer science Open problems Computer-related introductions in 1980 Emerging technologies Glossaries of technology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Post Quantum Cryptography
In cryptography, post-quantum cryptography (sometimes referred to as quantum-proof, quantum-safe or quantum-resistant) refers to cryptographic algorithms (usually public-key algorithms) that are thought to be secure against a cryptanalytic attack by a quantum computer. The problem with currently popular algorithms is that their security relies on one of three hard mathematical problems: the integer factorization problem, the discrete logarithm problem or the elliptic-curve discrete logarithm problem. All of these problems could be easily solved on a sufficiently powerful quantum computer running Shor's algorithm. Even though current quantum computers lack processing power to break any real cryptographic algorithm, many cryptographers are designing new algorithms to prepare for a time when quantum computing becomes a threat. This work has gained greater attention from academics and industry through the PQCrypto conference series since 2006 and more recently by several workshops on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Computing
Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though current quantum computers may be too small to outperform usual (classical) computers for practical applications, larger realizations are believed to be capable of solving certain computational problems, such as integer factorization (which underlies RSA encryption), substantially faster than classical computers. The study of quantum computing is a subfield of quantum information science. There are several models of quantum computation with the most widely used being quantum circuits. Other models include the quantum Turing machine, quantum annealing, and adiabatic quantum computation. Most models are based on the quantum bit, or "qubit", which is somewhat analogous to the bit in classical computation. A qubit can be in a 1 or 0 quantum s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shor's Algorithm
Shor's algorithm is a quantum algorithm, quantum computer algorithm for finding the prime factors of an integer. It was developed in 1994 by the American mathematician Peter Shor. On a quantum computer, to factor an integer N , Shor's algorithm runs in polynomial time, meaning the time taken is polynomial in \log N , the size of the integer given as input. Specifically, it takes quantum logic gate, quantum gates of order O \! \left((\log N)^ (\log \log N) (\log \log \log N) \right) using fast multiplication, or even O \! \left((\log N)^ (\log \log N) \right) utilizing the asymptotically fastest multiplication algorithm currently known due to Harvey and Van Der Hoven, thus demonstrating that the integer factorization problem can be efficiently solved on a quantum computer and is consequently in the complexity class BQP. This is almost exponentially faster than the most efficient known classical factoring algorithm, the ge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Elliptic-curve Cryptography
Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC allows smaller keys compared to non-EC cryptography (based on plain Galois fields) to provide equivalent security.Commercial National Security Algorithm Suite and Quantum Computing FAQ
U.S. National Security Agency, January 2016.
Elliptic curves are applicable for , s,
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

RSA (cryptosystem)
RSA (Rivest–Shamir–Adleman) is a public-key cryptography, public-key cryptosystem that is widely used for secure data transmission. It is also one of the oldest. The acronym "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publicly described the algorithm in 1977. An equivalent system was developed secretly in 1973 at Government Communications Headquarters (GCHQ) (the British signals intelligence agency) by the English mathematician Clifford Cocks. That system was classified information, declassified in 1997. In a public-key cryptosystem, the encryption key is public and distinct from the decryption key, which is kept secret (private). An RSA user creates and publishes a public key based on two large prime numbers, along with an auxiliary value. The prime numbers are kept secret. Messages can be encrypted by anyone, via the public key, but can only be decoded by someone who knows the prime numbers. The security of RSA relies on the pract ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical And Logical Qubits
In quantum computing, a ''qubit'' is a unit of information analogous to a bit (binary digit) in classical computing, but it is affected by quantum mechanical properties such as superposition and entanglement which allow qubits to be in some ways more powerful than classical bits for some tasks. Qubits are used in quantum circuits and quantum algorithms composed of quantum logic gates to solve computational problems, where they are used for input/output and intermediate computations. A physical qubit is a physical device that behaves as a two-state quantum system, used as a component of a computer system. A logical qubit is a physical or abstract qubit that performs as specified in a quantum algorithm or quantum circuit subject to unitary transformations, has a long enough coherence time to be usable by quantum logic gates (c.f. propagation delay for classical logic gates). , most technologies used to implement qubits face issues of stability, decoherence, fault tolerance an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Factorization
In number theory, integer factorization is the decomposition of a composite number into a product of smaller integers. If these factors are further restricted to prime numbers, the process is called prime factorization. When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist. The presumed difficulty of this problem is important for the algorithms used in cryptography such as RSA public-key encryption and the RSA digital signature. Many areas of mathematics and computer science have been brought to bear on the problem, including elliptic curves, algebraic number theory, and quantum computing. In 2019, Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé and Paul Zimmermann factored a 240-digit (795-bit) number (RSA-240) utilizing approximately 900 core-years of computing power. The researchers estimated that a 1024-bit RSA mod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peter Shor
Peter Williston Shor (born August 14, 1959) is an American professor of applied mathematics at MIT. He is known for his work on quantum computation, in particular for devising Shor's algorithm, a quantum algorithm for factoring exponentially faster than the best currently-known algorithm running on a classical computer. Early life and education Shor was born in New York City to Joan Bopp Shor and S. W. Williston Shor, of Jewish descent. He grew up in Washington, D.C. and Mill Valley, California. While attending Tamalpais High School, he placed third in the 1977 USA Mathematical Olympiad. After graduation that year, he won a silver medal at the International Math Olympiad in Yugoslavia (the U.S. team achieved the most points per country that year). He received his B.S. in Mathematics in 1981 for undergraduate work at Caltech, and was a Putnam Fellow in 1978. He earned his PhD in Applied Mathematics from MIT in 1985. His doctoral advisor was F. Thomson Leighton, and his thesi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of computationa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]