Quantum Dilogarithm
   HOME
*





Quantum Dilogarithm
In mathematics, the quantum dilogarithm is a special function defined by the formula : \phi(x)\equiv(x;q)_\infty=\prod_^\infty (1-xq^n),\quad , q, 0. References * * * * * * * External links * {{nlab, id=quantum+dilogarithm, title=quantum dilogarithm Special functions Q-analogs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Special Function
Special functions are particular mathematical functions that have more or less established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications. The term is defined by consensus, and thus lacks a general formal definition, but the List of mathematical functions contains functions that are commonly accepted as special. Tables of special functions Many special functions appear as solutions of differential equations or integrals of elementary functions. Therefore, tables of integrals usually include descriptions of special functions, and tables of special functions include most important integrals; at least, the integral representation of special functions. Because symmetries of differential equations are essential to both physics and mathematics, the theory of special functions is closely related to the theory of Lie groups and Lie algebras, as well as certain topics in mathematical physics. Symbolic co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Q-exponential
In combinatorial mathematics, a ''q''-exponential is a ''q''-analog of the exponential function, namely the eigenfunction of a ''q''-derivative. There are many ''q''-derivatives, for example, the classical ''q''-derivative, the Askey-Wilson operator, etc. Therefore, unlike the classical exponentials, ''q''-exponentials are not unique. For example, e_q(z) is the ''q''-exponential corresponding to the classical ''q''-derivative while \mathcal_q(z) are eigenfunctions of the Askey-Wilson operators. Definition The ''q''-exponential e_q(z) is defined as :e_q(z)= \sum_^\infty \frac = \sum_^\infty \frac = \sum_^\infty z^n\frac where _q is the ''q''-factorial and :(q;q)_n=(1-q^n)(1-q^)\cdots (1-q) is the ''q''-Pochhammer symbol. That this is the ''q''-analog of the exponential follows from the property :\left(\frac\right)_q e_q(z) = e_q(z) where the derivative on the left is the ''q''-derivative. The above is easily verified by considering the ''q''-derivative of the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Upper Half-plane
In mathematics, the upper half-plane, \,\mathcal\,, is the set of points in the Cartesian plane with > 0. Complex plane Mathematicians sometimes identify the Cartesian plane with the complex plane, and then the upper half-plane corresponds to the set of complex numbers with positive imaginary part: :\mathcal \equiv \ ~. The term arises from a common visualization of the complex number as the point in the plane endowed with Cartesian coordinates. When the  axis is oriented vertically, the "upper half-plane" corresponds to the region above the  axis and thus complex numbers for which  > 0. It is the domain of many functions of interest in complex analysis, especially modular forms. The lower half-plane, defined by   0. Proposition: Let ''A'' and ''B'' be semicircles in the upper half-plane with centers on the boundary. Then there is an affine mapping that takes ''A'' to ''B''. :Proof: First shift the center of ''A'' to (0,0). Then take λ = (diame ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ludvig Faddeev
Ludvig Dmitrievich Faddeev (also ''Ludwig Dmitriyevich''; russian: Лю́двиг Дми́триевич Фадде́ев; 23 March 1934 – 26 February 2017) was a Soviet and Russian mathematical physicist. He is known for the discovery of the Faddeev equations in the theory of the quantum mechanical three-body problem and for the development of path integral methods in the quantization of non-abelian gauge field theories, including the introduction (with Victor Popov) of Faddeev–Popov ghosts. He led the Leningrad School, in which he along with many of his students developed the quantum inverse scattering method for studying quantum integrable systems in one space and one time dimension. This work led to the invention of quantum groups by Drinfeld and Jimbo. Biography Faddeev was born in Leningrad to a family of mathematicians. His father, Dmitry Faddeev, was a well known algebraist, professor of Leningrad University and member of the Russian Academy of Sciences. His ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Self-adjoint
In mathematics, and more specifically in abstract algebra, an element ''x'' of a *-algebra is self-adjoint if x^*=x. A self-adjoint element is also Hermitian, though the reverse doesn't necessarily hold. A collection ''C'' of elements of a star-algebra is self-adjoint if it is closed under the involution operation. For example, if x^*=y then since y^*=x^=x in a star-algebra, the set is a self-adjoint set even though ''x'' and ''y'' need not be self-adjoint elements. In functional analysis, a linear operator A : H \to H on a Hilbert space is called self-adjoint if it is equal to its own adjoint ''A''. See self-adjoint operator for a detailed discussion. If the Hilbert space is finite-dimensional and an orthonormal basis has been chosen, then the operator ''A'' is self-adjoint if and only if the matrix describing ''A'' with respect to this basis is Hermitian, i.e. if it is equal to its own conjugate transpose. Hermitian matrices are also called self-adjoint. In a dagger categor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Physics
Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics (also known as physical mathematics). Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. Classical mechanics The rigorous, abstract and advanced reformulation of Newtonian mechanics adopting the Lagrangian mechanics and the Hamiltonian mechanics even in the presence of constraints. Both formulations are embodied in analytical mechanics and lead to understanding the deep interplay of the notions of symmetry (physics), symmetry and conservation law, con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Topology
Quantum topology is a branch of mathematics that connects quantum mechanics with low-dimensional topology. Dirac notation provides a viewpoint of quantum mechanics which becomes amplified into a framework that can embrace the amplitudes associated with topological spaces and the related embedding of one space within another such as knots and links in three-dimensional space. This bra–ket notation of kets and bras can be generalised, becoming maps of vector spaces associated with topological spaces that allow tensor products. Topological entanglement involving linking and braiding can be intuitively related to quantum entanglement. See also * Topological quantum field theory * Reshetikhin–Turaev invariant In the mathematical field of quantum topology, the Reshetikhin–Turaev invariants (RT-invariants) are a family of quantum invariants of framed links. Such invariants of framed links also give rise to invariants of 3-manifolds via the Dehn surgery ... References E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cluster Algebra
Cluster algebras are a class of commutative rings introduced by . A cluster algebra of rank ''n'' is an integral domain ''A'', together with some subsets of size ''n'' called clusters whose union generates the algebra ''A'' and which satisfy various conditions. Definitions Suppose that ''F'' is an integral domain, such as the field Q(''x''1,...,''x''''n'') of rational functions in ''n'' variables over the rational numbers Q. A cluster of rank ''n'' consists of a set of ''n'' elements of ''F'', usually assumed to be an algebraically independent set of generators of a field extension ''F''. A seed consists of a cluster of ''F'', together with an exchange matrix ''B'' with integer entries ''b''''x'',''y'' indexed by pairs of elements ''x'', ''y'' of the cluster. The matrix is sometimes assumed to be skew-symmetric, so that ''b''''x'',''y'' = –''b''''y'',''x'' for all ''x'' and ''y''. More generally the matrix might be skew-symmetrizable, meaning there are positive integers '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Letters In Mathematical Physics
''Letters in Mathematical Physics'' is a peer-reviewed scientific journal in mathematical physics published by Springer Science+Business Media. It publishes letters and longer research articles, occasionally also articles containing topical reviews. It is essentially a platform for the rapid dissemination of short contributions in the field of mathematical physics. In addition, the journal publishes contributions to modern mathematics in fields which have a potential physical application, and developments in theoretical physics which have potential mathematical impact. The editors are Volker Bach, Edward Frenkel, Maxim Kontsevich, Dirk Kreimer, Nikita Nekrasov, Massimo Porrati, and Daniel Sternheimer. Abstracting and indexing The following services abstract or index ''Letters in Mathematical Physics'': Academic OneFile, Academic Search, Astrophysics Data System, Chemical Abstracts Service, Current Contents/Physical, Chemical and Earth Sciences, Current Index to Statistics, EBSC ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Modern Physics Letters A
''Modern Physics Letters A'' (MPLA) is the first in a series of journals published by World Scientific under the title ''Modern Physics Letters''. It covers specifically papers and research on gravitation, cosmology, nuclear physics, and particles and fields. Related journals * '' Modern Physics Letters B'' * ''International Journal of Modern Physics A'' * ''International Journal of Modern Physics D'' * '' International Journal of Modern Physics E'' Abstracting and indexing According to the ''Journal Citation Reports'', the journal had an impact factor of 1.594 for 2021. The journal is abstracted and indexed in: * Science Citation Index * SciSearch * ISI Alerting Services * Current Contents/Physical, Chemical & Earth Sciences * Astrophysics Data System (ADS) Abstract Service * Mathematical Reviews * Inspec * Zentralblatt MATH zbMATH Open, formerly Zentralblatt MATH, is a major reviewing service providing reviews and abstracts for articles in pure and applied mathematics, p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics Letters B
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Progress Of Theoretical Physics Supplement
''Progress of Theoretical and Experimental Physics'' (PTEP) is a monthly peer-reviewed scientific journal published by Oxford University Press on behalf of the Physical Society of Japan. It was established as ''Progress of Theoretical Physics'' in July 1946 by Hideki Yukawa was a Japanese theoretical physicist and the first Japanese Nobel laureate for his prediction of the pi meson, or pion. Biography He was born as Hideki Ogawa in Tokyo and grew up in Kyoto with two older brothers, two older sisters, and two yo ... and obtained its current name in January 2013. ''Progress of Theoretical and Experimental Physics'' is part of the SCOAP3 initiative. References External links * Physics journals English-language journals Publications established in 1946 Theoretical physics Monthly journals Oxford University Press academic journals Open access journals Particle physics journals {{physics-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]