Quadratic Frobenius Test
   HOME





Quadratic Frobenius Test
The quadratic Frobenius test (QFT) is a probabilistic primality test to determine whether a number is a probable prime. It is named after Ferdinand Georg Frobenius. The test uses the concepts of quadratic polynomials and the Frobenius automorphism. It should not be confused with the more general Frobenius test using a quadratic polynomial – the QFT restricts the polynomials allowed based on the input, and also has other conditions that must be met. A composite passing this test is a Frobenius pseudoprime, but the converse is not necessarily true. Concept Grantham's stated goal when developing the algorithm was to provide a test that primes would always pass and composites would pass with a probability of less than 1/7710. The test was later extended by Damgård and Frandsen to a test called ''extended quadratic Frobenius test'' (EQFT). Algorithm Let be a positive integer such that is odd, and let ''b'' and ''c'' be integers such that \left(\frac\right) = -1 and \left(\frac\r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probabilistic Algorithm
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are random variables. There is a distinction between algorithms that use the random input so that they always terminate with the correct answer, but where the expected running time is finite (Las Vegas algorithms, for example Quicksort), and algorithms which have a chance of producing an incorrect result ( Monte Carlo algorithms, for example the Monte Carlo algorithm for the MFAS problem) or fail to produce a result either by signaling a failure or failing to terminate. In some cases, probabilistic algorithms are the only practical means of solving a problem. In common practice, randomized alg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primality Test
A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not. Factorization is thought to be a computationally difficult problem, whereas primality testing is comparatively easy (its running time is polynomial in the size of the input). Some primality tests prove that a number is prime, while others like Miller–Rabin prove that a number is composite. Therefore, the latter might more accurately be called ''compositeness tests'' instead of primality tests. Simple methods The simplest primality test is '' trial division'': given an input number, n, check whether it is divisible by any prime number between 2 and \sqrt n (i.e., whether the division leaves no remainder). If so, then n is composite. Otherwise, it is prime.Riesel (1994) pp.2-3 For any divisor p \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probable Prime
In number theory, a probable prime (PRP) is an integer that satisfies a specific condition that is satisfied by all prime numbers, but which is not satisfied by most composite numbers. Different types of probable primes have different specific conditions. While there may be probable primes that are composite (called pseudoprimes), the condition is generally chosen in order to make such exceptions rare. Fermat's test for compositeness, which is based on Fermat's little theorem, works as follows: given an integer ''n'', choose some integer ''a'' that is not a multiple of ''n''; (typically, we choose ''a'' in the range ). Calculate . If the result is not 1, then ''n'' is composite. If the result is 1, then ''n'' is likely to be prime; ''n'' is then called a probable prime to base ''a''. A weak probable prime to base ''a'' is an integer that is a probable prime to base ''a'', but which is not a strong probable prime to base ''a'' (see below). For a fixed base ''a'', it is unusual fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ferdinand Georg Frobenius
Ferdinand Georg Frobenius (26 October 1849 – 3 August 1917) was a German mathematician, best known for his contributions to the theory of elliptic functions, differential equations, number theory, and to group theory. He is known for the famous determinantal identities, known as Frobenius–Stickelberger formulae, governing elliptic functions, and for developing the theory of biquadratic forms. He was also the first to introduce the notion of rational approximations of functions (nowadays known as Padé approximants), and gave the first full proof for the Cayley–Hamilton theorem. He also lent his name to certain differential-geometric objects in modern mathematical physics, known as Frobenius manifolds. Biography Ferdinand Georg Frobenius was born on 26 October 1849 in Charlottenburg, a suburb of Berlin, from parents Christian Ferdinand Frobenius, a Protestant parson, and Christine Elizabeth Friedrich. He entered the Joachimsthal Gymnasium in 1860 when he was nearly el ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Polynomial
In mathematics, a quadratic function of a single variable is a function of the form :f(x)=ax^2+bx+c,\quad a \ne 0, where is its variable, and , , and are coefficients. The expression , especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two. In elementary mathematics a polynomial and its associated polynomial function are rarely distinguished and the terms ''quadratic function'' and ''quadratic polynomial'' are nearly synonymous and often abbreviated as ''quadratic''. The graph of a real single-variable quadratic function is a parabola. If a quadratic function is equated with zero, then the result is a quadratic equation. The solutions of a quadratic equation are the zeros (or ''roots'') of the corresponding quadratic function, of which there can be two, one, or zero. The solutions are described by the quadratic formula. A quadratic polynomial or quadratic function can involve more than one variabl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frobenius Automorphism
In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic , an important class that includes finite fields. The endomorphism maps every element to its -th power. In certain contexts it is an automorphism, but this is not true in general. Definition Let be a commutative ring with prime characteristic (an integral domain of positive characteristic always has prime characteristic, for example). The Frobenius endomorphism ''F'' is defined by :F(r) = r^p for all ''r'' in ''R''. It respects the multiplication of ''R'': :F(rs) = (rs)^p = r^ps^p = F(r)F(s), and is 1 as well. Moreover, it also respects the addition of . The expression can be expanded using the binomial theorem. Because is prime, it divides but not any for ; it therefore will divide the numerator, but not the denominator, of the explicit formula of the binomial coefficients :\frac, if . The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frobenius Pseudoprime
In number theory, a Frobenius pseudoprime is a pseudoprime, whose definition was inspired by the quadratic Frobenius test described by Jon Grantham in a 1998 preprint and published in 2000. Frobenius pseudoprimes can be defined with respect to polynomials of degree at least 2, but they have been most extensively studied in the case of quadratic polynomials. Frobenius pseudoprimes w.r.t. quadratic polynomials The definition of Frobenius pseudoprimes with respect to a monic quadratic polynomial x^2 - Px + Q, where the discriminant D = P^2-4Q is not a square, can be expressed in terms of Lucas sequences U_n(P,Q) and V_n(P,Q) as follows. A composite number ''n'' is a Frobenius (P,Q) pseudoprime if and only if : (1) \qquad \gcd(n,2QD)=1, : (2) \qquad U_(P,Q) \equiv 0 \pmod n, and : (3) \qquad V_(P,Q) \equiv 2Q^ \pmod, where \delta=\left(\tfrac Dn\right) is the Jacobi symbol. When condition (2) is satisfied, condition (3) becomes equivalent to : (3') \qquad V_n(P,Q) \equiv P\pmod. Ther ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Composite Number
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Accordingly it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime number, prime, or the Unit (ring theory), unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. E.g., the integer 14 is a composite number because it is the product of the two smaller integers 2 × 7 but the integers 2 and 3 are not because each can only be divided by one and itself. The composite numbers up to 150 are: :4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ivan Damgård
Ivan Bjerre Damgård (born 1956) is a Danish cryptographer and currently a professor at the Department of Computer Science, Aarhus University, Denmark. Ivan is the co-founder of CryptomathicPartisiaand Sepior. Ivan is a Professor and head of the research group in cryptography at Aarhus University. He is one of the top cited and publishing researchers in cryptography, is a fellow of the IACR (International Association for Cryptologic Research), and received the 2015 RSA Award for Excellence in the Field of Mathematics. Academic background In 1983, he obtained a master's degree in mathematics (with minors in music and computer science) at Aarhus University. He began his PhD studies in 1985 at the same university, and was for a period, a guest researcher at CWI in Amsterdam in 1987. He earned his PhD degree in May, 1988, with the thesis ''Ubetinget beskyttelse i kryptografiske protokoller'' (Unconditional protection in cryptographic protocols) and has been employed at Aarhus Unive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jacobi Symbol
Jacobi symbol for various ''k'' (along top) and ''n'' (along left side). Only are shown, since due to rule (2) below any other ''k'' can be reduced modulo ''n''. Quadratic residues are highlighted in yellow — note that no entry with a Jacobi symbol of −1 is a quadratic residue, and if ''k'' is a quadratic residue modulo a coprime ''n'', then , but not all entries with a Jacobi symbol of 1 (see the and rows) are quadratic residues. Notice also that when either ''n'' or ''k'' is a square, all values are nonnegative. The Jacobi symbol is a generalization of the Legendre symbol. Introduced by Carl Gustav Jakob Jacobi, Jacobi in 1837, it is of theoretical interest in modular arithmetic and other branches of number theory, but its main use is in computational number theory, especially primality testing and integer factorization; these in turn are important in cryptography. Definition For any integer ''a'' and any positive odd integer ''n'', the Jacobi symbol is define ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book '' Disquisitiones Arithmeticae'', published in 1801. A familiar example of modular arithmetic is the hour hand on a 12-hour clock. If the hour hand points to 7 now, then 8 hours later it will point to 3. Ordinary addition would result in , but 15 reads as 3 on the clock face. This is because the hour hand makes one rotation every 12 hours and the hour number starts over when the hour hand passes 12. We say that 15 is ''congruent'' to 3 modulo 12, written 15 ≡ 3 (mod 12), so that 7 + 8 ≡ 3 (mod 12). Similarly, if one starts at 12 and waits 8 hours, the hour hand will be at 8. If one instead waited twice as long, 16 hours, the hour hand would be on 4. This ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiplicative Group Of Integers Modulo N
In modular arithmetic, the integers coprime (relatively prime) to ''n'' from the set \ of ''n'' non-negative integers form a group under multiplication modulo ''n'', called the multiplicative group of integers modulo ''n''. Equivalently, the elements of this group can be thought of as the congruence classes, also known as ''residues'' modulo ''n'', that are coprime to ''n''. Hence another name is the group of primitive residue classes modulo ''n''. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo ''n''. Here ''units'' refers to elements with a multiplicative inverse, which, in this ring, are exactly those coprime to ''n''. This group, usually denoted (\mathbb/n\mathbb)^\times, is fundamental in number theory. It is used in cryptography, integer factorization, and primality testing. It is an abelian, finite group whose order is given by Euler's totient function: , (\mathbb/n\mathbb)^\times, =\varph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]