HOME
*





Quantum Metrology
Quantum metrology is the study of making high-resolution and highly sensitive measurements of physical parameters using quantum theory to describe the physical systems, particularly exploiting quantum entanglement and quantum squeezing. This field promises to develop measurement techniques that give better precision than the same measurement performed in a classical framework. Together with quantum hypothesis testing, it represents an important theoretical model at the basis of quantum sensing. Mathematical foundations A basic task of quantum metrology is estimating the parameter \theta of the unitary dynamics \varrho(\theta)=\exp(-iH\theta)\varrho_0\exp(+iH\theta), where \varrho_0 is the initial state of the system and H is the Hamiltonian of the system. \theta is estimated based on measurements on \varrho(\theta). Typically, the system is composed of many particles, and the Hamiltonian is a sum of single-particle terms H=\sum_k H_k, where H_k acts on the kth particle. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Entanglement
Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics. Measurements of physical properties such as position, momentum, spin, and polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, is found to be anticlockwise. However, this behavior gives ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Interferometers
Linearity is the property of a mathematical relationship (''function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear relationship of voltage and current in an electrical conductor ( Ohm's law), and the relationship of mass and weight. By contrast, more complicated relationships are ''nonlinear''. Generalized for functions in more than one dimension, linearity means the property of a function of being compatible with addition and scaling, also known as the superposition principle. The word linear comes from Latin ''linearis'', "pertaining to or resembling a line". In mathematics In mathematics, a linear map or linear function ''f''(''x'') is a function that satisfies the two properties: * Additivity: . * Homogeneity of degree 1: for all α. These properties are known as the superposition principle. In this definition, ''x'' is not necessarily a rea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Cramér-Rao Bound
In physics, a quantum (plural quanta) is the minimum amount of any physical entity ( physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantization". This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum. For example, a photon is a single quantum of light (or of any other form of electromagnetic radiation). Similarly, the energy of an electron bound within an atom is quantized and can exist only in certain discrete values. (Atoms and matter in general are stable because electrons can exist only at discrete energy levels within an atom.) Quantization is one of the foundations of the much broader physics of quantum mechanics. Quantization of energy and its influence on how energy and matter interact (quantum electrodynamics) is part of the fundamental framework for understanding and describing nature. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Fisher Information
The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. The quantum Fisher information F_ varrho,A of a state \varrho with respect to the observable A is defined as : F_ varrho,A2\sum_ \frac \vert \langle k \vert A \vert l\rangle \vert^2, where \lambda_k and \vert k \rangle are the eigenvalues and eigenvectors of the density matrix \varrho, respectively, and the summation goes over all k and l such that \lambda_k+\lambda_l>0. When the observable generates a unitary transformation of the system with a parameter \theta from initial state \varrho_0, :\varrho(\theta)=\exp(-iA\theta)\varrho_0\exp(+iA\theta), the quantum Fisher information constrains the achievable precision in statistical estimation of the parameter \theta via the quantum Cramér–Rao bound as :(\Delta \theta)^2 \ge \frac 1 , where m is the number of independent repetitions. It is often desirable to estimate the magnitude of an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NOON State
In quantum optics, a NOON state or N00N state is a quantum-mechanical many-body Quantum entanglement, entangled state: : , \psi_\text \rangle = \frac, \, which represents a superposition of ''N'' particles in mode ''a'' with zero particles in mode ''b'', and vice versa. Usually, the particles are photons, but in principle any bosonic field can support NOON states. Applications NOON states are an important concept in quantum metrology and quantum sensing for their ability to make precision phase measurements when used in an optical Interferometry, interferometer. For example, consider the observable : A = , N,0\rangle\langle 0,N, + , 0,N\rangle\langle N,0, . \, The expectation value of A for a system in a NOON state switches between +1 and −1 when \theta changes from 0 to \pi/N. Moreover, the error in the phase measurement becomes : \Delta \theta = \frac = \frac. This is the so-called Heisenberg limit, and gives a quadratic improvement over the quantum limit, st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mach–Zehnder Interferometer
The Mach–Zehnder interferometer is a device used to determine the relative phase shift variations between two collimated beams derived by splitting light from a single source. The interferometer has been used, among other things, to measure phase shifts between the two beams caused by a sample or a change in length of one of the paths. The apparatus is named after the physicists Ludwig Mach (the son of Ernst Mach) and Ludwig Zehnder; Zehnder's proposal in an 1891 article was refined by Mach in an 1892 article. Demonstrations of Mach–Zehnder interferometry with particles other than photons (particles of light) had been demonstrated as well in multiple experiments. The versatility of the Mach–Zehnder configuration has led to its being used in a wide range of fundamental research topics in quantum mechanics, including studies on counterfactual definiteness, quantum entanglement, quantum computation, quantum cryptography, quantum logic, Elitzur–Vaidman bomb tester, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Squeezed State
In physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues. Examples are position x and momentum p of a particle, and the (dimension-less) electric field in the amplitude X (phase 0) and in the mode Y (phase 90°) of a light wave (the wave's quadratures). The product of the standard deviations of two such operators obeys the uncertainty principle: :\Delta x \Delta p \geq \frac2\; and \;\Delta X \Delta Y \geq \frac4 , respectively. Trivial examples, which are in fact not squeezed, are the ground state , 0\rangle of the quantum harmonic oscillator and the family of coherent states , \alpha\rangle. These states saturate the uncertainty above and have a symmetric distribution of the operator uncertainties with \Delta x_g = \Delta p_g in "natural oscillator units" and \Delta X_g = \Delta Y_g = 1/2. (In literature different normalizations for the quadrature amplitudes ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Spin Squeezing
Spin squeezing is a quantum process that decreases the variance of one of the angular momentum components in an ensemble of particles with a spin. The quantum states obtained are called spin squeezed states. Such states have been proposed for quantum metrology, to allow a better precision for estimating a rotation angle than classical interferometers. Recently, it was shown that these states cannot provide a better precision. Mathematical definition Spin squeezed states for an ensemble of spins have been defined analogously to squeezed states of a bosonic mode. A quantum state always obeys the Heisenberg uncertainty relation (\Delta J_x)^2(\Delta J_y)^2 \geqslant \frac 1 4 , \langle J_z \rangle , ^2, where J_l are the collective angular momentum components defined as J_l=\sum_n j_l^, and j_l^ are the single particle angular momentum components. The state is spin-squeezed in the x-direction, if the variance of the x-component is smaller than the square root of the right-hand s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gravitational Radiation
Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as waves similar to electromagnetic waves but the gravitational equivalent. Gravitational waves were later predicted in 1916 by Albert Einstein on the basis of his general theory of relativity as ripples in spacetime. Later he refused to accept gravitational waves. Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation. Newton's law of universal gravitation, part of classical mechanics, does not provide for their existence, since that law is predicated on the assumption that physical interactions propagate instantaneously (at infinite speed)showing one of the ways the methods of Newtonian physics are unable to explain p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LIGO
The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large observatories were built in the United States with the aim of detecting gravitational waves by laser interferometry. These observatories use mirrors spaced four kilometers apart which are capable of detecting a change of less than one ten-thousandth the charge diameter of a proton. (that is, to Proxima Centauri at ). The initial LIGO observatories were funded by the United States National Science Foundation (NSF) and were conceived, built and are operated by Caltech and MIT. They collected data from 2002 to 2010 but no gravitational waves were detected. The Advanced LIGO Project to enhance the original LIGO detectors began in 2008 and continues to be supported by the NSF, with important contributions from the United Kingdom's Science ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Virgo Interferometer
The Virgo interferometer is a large interferometer designed to detect gravitational waves predicted by the general theory of relativity. Virgo is a Michelson interferometer that is isolated from external disturbances: its mirrors and instrumentation are suspended and its laser beam operates in a vacuum. The instrument's two arms are three kilometres long and located in Santo Stefano a Macerata, near the city of Pisa, Italy. Virgo is hosted by the European Gravitational Observatory (EGO), a consortium founded by the French CNRS and Italian INFN. The ''Virgo Collaboration'' operates the detector and is composed of more than 650 members, representing 119 institutions in 14 different countries. Other interferometers similar to Virgo have the same goal of detecting gravitational waves, including the two LIGO interferometers in the United States (at the Hanford Site and in Livingston, Louisiana). Since 2007, Virgo and LIGO have agreed to share and jointly analyze the data recorded ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heisenberg Limit
In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of Inequality (mathematics), mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physical quantities of a particle, such as Position (vector), position, ''x'', and momentum, ''p'', can be predicted from initial conditions. Such variable pairs are known as Complementarity (physics), complementary variables or Canonical coordinates, canonically conjugate variables; and, depending on interpretation, the uncertainty principle limits to what extent such conjugate properties maintain their approximate meaning, as the mathematical framework of Quantum mechanics, quantum physics does not support the notion of simultaneously well-defined conjugate properties expressed by a single value. The uncertainty principle implies that it is in general not possible to predict the value of a quantity with arbitrary certa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]