Pseudograph
   HOME
*



picture info

Pseudograph
In mathematics, and more specifically in graph theory, a multigraph is a graph which is permitted to have multiple edges (also called ''parallel edges''), that is, edges that have the same end nodes. Thus two vertices may be connected by more than one edge. There are two distinct notions of multiple edges: * ''Edges without own identity'': The identity of an edge is defined solely by the two nodes it connects. In this case, the term "multiple edges" means that the same edge can occur several times between these two nodes. * ''Edges with own identity'': Edges are primitive entities just like nodes. When multiple edges connect two nodes, these are different edges. A multigraph is different from a hypergraph, which is a graph in which an edge can connect any number of nodes, not just two. For some authors, the terms ''pseudograph'' and ''multigraph'' are synonymous. For others, a pseudograph is a multigraph that is permitted to have loops. Undirected multigraph (edges without ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Glossary Of Graph Theory
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges. Symbols A B C D E F G H I K L M N O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Glossary Of Graph Theory Terms
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges. Symbols A B C D E F G H I K L M N O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiple Edges
In graph theory, multiple edges (also called parallel edges or a multi-edge), are, in an undirected graph, two or more edges that are incident to the same two vertices, or in a directed graph, two or more edges with both the same tail vertex and the same head vertex. A simple graph has no multiple edges and no loops. Depending on the context, a graph may be defined so as to either allow or disallow the presence of multiple edges (often in concert with allowing or disallowing loops): *Where graphs are defined so as to ''allow'' multiple edges and loops, a graph without loops or multiple edges is often distinguished from other graphs by calling it a ''simple graph.'' *Where graphs are defined so as to ''disallow'' multiple edges and loops, a multigraph or a pseudograph is often defined to mean a "graph" which ''can'' have loops and multiple edges. Multiple edges are, for example, useful in the consideration of electrical networks, from a graph theoretical point of view. Additi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loop (graph Theory)
In graph theory, a loop (also called a self-loop or a ''buckle'') is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing multiple edges between the same vertices): * Where graphs are defined so as to ''allow'' loops and multiple edges, a graph without loops or multiple edges is often distinguished from other graphs by calling it a ''simple graph''. * Where graphs are defined so as to ''disallow'' loops and multiple edges, a graph that does have loops or multiple edges is often distinguished from the graphs that satisfy these constraints by calling it a ''multigraph'' or ''pseudograph''. In a graph with one vertex, all edges must be loops. Such a graph is called a bouquet. Degree For an undirected graph, the degree of a vertex is equal to the number of adjacent vertices. A special case i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tuple
In mathematics, a tuple is a finite ordered list (sequence) of elements. An -tuple is a sequence (or ordered list) of elements, where is a non-negative integer. There is only one 0-tuple, referred to as ''the empty tuple''. An -tuple is defined inductively using the construction of an ordered pair. Mathematicians usually write tuples by listing the elements within parentheses "" and separated by a comma and a space; for example, denotes a 5-tuple. Sometimes other symbols are used to surround the elements, such as square brackets "nbsp; or angle brackets "⟨ ⟩". Braces "" are used to specify arrays in some programming languages but not in mathematical expressions, as they are the standard notation for sets. The term ''tuple'' can often occur when discussing other mathematical objects, such as vectors. In computer science, tuples come in many forms. Most typed functional programming languages implement tuples directly as product types, tightly associated with algebr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stammbac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multidimensional Network
In network theory, multidimensional networks, a special type of ''multilayer network'', are networks with multiple kinds of relations. Increasingly sophisticated attempts to model real-world systems as multidimensional networks have yielded valuable insight in the fields of social network analysis, economics, urban and international transport, ecology, psychology, medicine, biology, commerce, climatology, physics, computational neuroscience, operations management, and finance. Terminology The rapid exploration of complex networks in recent years has been dogged by a lack of standardized naming conventions, as various groups use overlapping and contradictory terminology to describe specific network configurations (e.g., multiplex, multilayer, multilevel, multidimensional, multirelational, interconnected). Formally, multidimensional networks are edge-labeled multigraphs. The term "fully multidimensional" has also been used to refer to a multipartite edge-labeled multigraph. Multidim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Labeled Graph
In the mathematical discipline of graph theory, a graph labelling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph. Formally, given a graph , a vertex labelling is a function of to a set of labels; a graph with such a function defined is called a vertex-labeled graph. Likewise, an edge labelling is a function of to a set of labels. In this case, the graph is called an edge-labeled graph. When the edge labels are members of an ordered set (e.g., the real numbers), it may be called a weighted graph. When used without qualification, the term labeled graph generally refers to a vertex-labeled graph with all labels distinct. Such a graph may equivalently be labeled by the consecutive integers , where is the number of vertices in the graph. For many applications, the edges or vertices are given labels that are meaningful in the associated domain. For example, the edges may be assigned weights representing the "cost" of trave ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graph Labeling
In the mathematical discipline of graph theory, a graph labelling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph. Formally, given a graph , a vertex labelling is a function of to a set of labels; a graph with such a function defined is called a vertex-labeled graph. Likewise, an edge labelling is a function of to a set of labels. In this case, the graph is called an edge-labeled graph. When the edge labels are members of an ordered set (e.g., the real numbers), it may be called a weighted graph. When used without qualification, the term labeled graph generally refers to a vertex-labeled graph with all labels distinct. Such a graph may equivalently be labeled by the consecutive integers , where is the number of vertices in the graph. For many applications, the edges or vertices are given labels that are meaningful in the associated domain. For example, the edges may be assigned weights representing the "cost" of trave ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]