HOME
*





Pseudo-order
In constructivism (mathematics), constructive mathematics, a pseudo-order is a constructive generalisation of a linear order to the continuous case. The usual trichotomy (mathematics), trichotomy law does not hold in the constructive continuum because of its indecomposability (constructive mathematics), indecomposability, so this condition is weakened. A pseudo-order is a binary relation satisfying the following conditions: # It is not possible for two elements to each be less than the other. That is, \forall x,y: \neg\;(x < y \;\wedge\; y < x). # For all , , and , if then either or . That is, \forall x,y,z: x < y \;\to\; (x < z \;\vee\; z < y). # Every two elements for which neither one is less than the other must be equal. That is, \forall x,y: \neg\;(x < y \;\vee\; y < x) \;\to\; x = y This first condition is simply asymmetric relation, asymmetry. It follows from the first two conditions that a pseudo-order is transitive relation, transitive. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Apartness Relation
In constructive mathematics, an apartness relation is a constructive form of inequality, and is often taken to be more basic than equality. It is often written as \# (⧣ in unicode) to distinguish from the negation of equality (the ''denial inequality'') \neq, which is weaker. Description An apartness relation is a symmetric irreflexive binary relation with the additional condition that if two elements are apart, then any other element is apart from at least one of them (this last property is often called ''co-transitivity'' or ''comparison''). That is, a binary relation \# is an apartness relation if it satisfies:. # \neg\;(x \# x) # x \# y \;\to\; y \# x # x \# y \;\to\; (x \# z \;\vee\; y \# z) The complement of an apartness relation is an equivalence relation, as the above three conditions become reflexivity, symmetry, and transitivity. If this equivalence relation is in fact equality, then the apartness relation is called ''tight''. That is, \# is a if it additionally sati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Constructivism (mathematics)
In the philosophy of mathematics, constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove the existence of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then deriving a contradiction from that assumption. Such a proof by contradiction might be called non-constructive, and a constructivist might reject it. The constructive viewpoint involves a verificational interpretation of the existential quantifier, which is at odds with its classical interpretation. There are many forms of constructivism. These include the program of intuitionism founded by Brouwer, the finitism of Hilbert and Bernays, the constructive recursive mathematics of Shanin and Markov, and Bishop's program of constructive analysis. Constructivism also includes the study of constructive set theories such as CZ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semiorder
In order theory, a branch of mathematics, a semiorder is a type of ordering for items with numerical scores, where items with widely differing scores are compared by their scores and where scores within a given margin of error are deemed incomparable. Semiorders were introduced and applied in mathematical psychology by as a model of human preference. They generalize strict weak orderings, in which items with equal scores may be tied but there is no margin of error. They are a special case of partial orders and of interval orders, and can be characterized among the partial orders by additional axioms, or by two forbidden four-item suborders. Utility theory The original motivation for introducing semiorders was to model human preferences without assuming that incomparability is a transitive relation. For instance, suppose that x, y, and z represent three quantities of the same material, and that x is larger than z by the smallest amount that is perceptible as a difference, while y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Relation
A symmetric relation is a type of binary relation. An example is the relation "is equal to", because if ''a'' = ''b'' is true then ''b'' = ''a'' is also true. Formally, a binary relation ''R'' over a set ''X'' is symmetric if: :\forall a, b \in X(a R b \Leftrightarrow b R a) , where the notation aRb means that (a,b)\in R. If ''R''T represents the converse of ''R'', then ''R'' is symmetric if and only if ''R'' = ''R''T. Symmetry, along with reflexivity and transitivity, are the three defining properties of an equivalence relation. Examples In mathematics * "is equal to" (equality) (whereas "is less than" is not symmetric) * "is comparable to", for elements of a partially ordered set * "... and ... are odd": :::::: Outside mathematics * "is married to" (in most legal systems) * "is a fully biological sibling of" * "is a homophone of" * "is co-worker of" * "is teammate of" Relationship to asymmetric and antisymmetric relations By definition, a nonempty relation cannot be bot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Antisymmetric Relation
In mathematics, a binary relation R on a set X is antisymmetric if there is no pair of ''distinct'' elements of X each of which is related by R to the other. More formally, R is antisymmetric precisely if for all a, b \in X, \text \,aRb\, \text \,a \neq b\, \text \,bRa\, \text, or equivalently, \text \,aRb\, \text \,bRa\, \text \,a = b. The definition of antisymmetry says nothing about whether aRa actually holds or not for any a. An antisymmetric relation R on a set X may be reflexive (that is, aRa for all a \in X), irreflexive (that is, aRa for no a \in X), or neither reflexive nor irreflexive. A relation is asymmetric if and only if it is both antisymmetric and irreflexive. Examples The divisibility relation on the natural numbers is an important example of an antisymmetric relation. In this context, antisymmetry means that the only way each of two numbers can be divisible by the other is if the two are, in fact, the same number; equivalently, if n and m are distinct and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Relation
In mathematics, Euclidean relations are a class of binary relations that formalize " Axiom 1" in Euclid's ''Elements'': "Magnitudes which are equal to the same are equal to each other." Definition A binary relation ''R'' on a set ''X'' is Euclidean (sometimes called right Euclidean) if it satisfies the following: for every ''a'', ''b'', ''c'' in ''X'', if ''a'' is related to ''b'' and ''c'', then ''b'' is related to ''c''.. To write this in predicate logic: :\forall a, b, c\in X\,(a\,R\, b \land a \,R\, c \to b \,R\, c). Dually, a relation ''R'' on ''X'' is left Euclidean if for every ''a'', ''b'', ''c'' in ''X'', if ''b'' is related to ''a'' and ''c'' is related to ''a'', then ''b'' is related to ''c'': :\forall a, b, c\in X\,(b\,R\, a \land c \,R\, a \to b \,R\, c). Properties # Due to the commutativity of ∧ in the definition's antecedent, ''aRb'' ∧ ''aRc'' even implies ''bRc'' ∧ ''cRb'' when ''R'' is right Euclidean. Similarly, ''bRa'' ∧ ''cRa'' implies ''bRc' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Singleton Set
In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set \ is a singleton whose single element is 0. Properties Within the framework of Zermelo–Fraenkel set theory, the axiom of regularity guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains, thus 1 and are not the same thing, and the empty set is distinct from the set containing only the empty set. A set such as \ is a singleton as it contains a single element (which itself is a set, however, not a singleton). A set is a singleton if and only if its cardinality is . In von Neumann's set-theoretic construction of the natural numbers, the number 1 is ''defined'' as the singleton \. In axiomatic set theory, the existence of singletons is a consequence of the axiom of pairing: for any set ''A'', the axiom applied to ''A'' and ''A'' asserts the existence of \, which is the same ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Domain Of A Relation
In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over sets and is a new set of ordered pairs consisting of elements in and in . It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element is ''related'' to an element , if and only if the pair belongs to the set of ordered pairs that defines the ''binary relation''. A binary relation is the most studied special case of an -ary relation over sets , which is a subset of the Cartesian product X_1 \times \cdots \times X_n. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime is related to each integer that is a multiple of , but not to an integer that is not a multiple of . In this relation, for instance, the prime number 2 is related to num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reflexive Relation
In mathematics, a binary relation ''R'' on a set ''X'' is reflexive if it relates every element of ''X'' to itself. An example of a reflexive relation is the relation " is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations. Definitions Let R be a binary relation on a set X, which by definition is just a subset of X \times X. For any x, y \in X, the notation x R y means that (x, y) \in R while "not x R y" means that (x, y) \not\in R. The relation R is called if x R x for every x \in X or equivalently, if \operatorname_X \subseteq R where \operatorname_X := \ denotes the identity relation on X. The of R is the union R \cup \operatorname_X, which can equivalently be defined as the smallest (with respect to \subseteq) reflexive relation on X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Connex Relation
In mathematics, a relation on a set is called connected or total if it relates (or "compares") all pairs of elements of the set in one direction or the other while it is called strongly connected if it relates pairs of elements. As described in the terminology section below, the terminology for these properties is not uniform. This notion of "total" should not be confused with that of a total relation in the sense that for all x \in X there is a y \in X so that x \mathrel y (see serial relation). Connectedness features prominently in the definition of total orders: a total (or linear) order is a partial order in which any two elements are comparable; that is, the order relation is connected. Similarly, a strict partial order that is connected is a strict total order. A relation is a total order if and only if it is both a partial order and strongly connected. A relation is a strict total order if, and only if, it is a strict partial order and just connected. A strict total or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Weak Ordering
In mathematics, especially order theory, a weak ordering is a mathematical formalization of the intuitive notion of a ranking of a set, some of whose members may be tied with each other. Weak orders are a generalization of totally ordered sets (rankings without ties) and are in turn generalized by partially ordered sets and preorders.. There are several common ways of formalizing weak orderings, that are different from each other but cryptomorphic (interconvertable with no loss of information): they may be axiomatized as strict weak orderings (partially ordered sets in which incomparability is a transitive relation), as total preorders (transitive binary relations in which at least one of the two possible relations exists between every pair of elements), or as ordered partitions (partitions of the elements into disjoint subsets, together with a total order on the subsets). In many cases another representation called a preferential arrangement based on a utility function is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


There Exists
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("" or "" or "). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for ''all'' members of the domain. Some sources use the term existentialization to refer to existential quantification. Basics Consider a formula that states that some natural number multiplied by itself is 25. : 0·0 = 25, or 1·1 = 25, or 2·2 = 25, or 3·3 = 25, ... This would seem to be a logical disjunction because of the repeated use of "or". However, the ellipses make this impossible to integrate and to interpret it as a disjunction in formal logic. Instead, the statement could be rephrased more formally a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]