Property Testing
   HOME
*





Property Testing
In computer science, a property testing algorithm for a decision problem is an algorithm whose query complexity to its input is much smaller than the instance size of the problem. Typically property testing algorithms are used to distinguish if some combinatorial structure ''S'' (such as a graph or a boolean function) satisfies some property ''P'', or is "far" from having this property (meaning an ε-fraction of the representation of ''S'' need be modified in order to make ''S'' satisfy ''P''), using only a small number of "local" queries to the object. For example, the following promise problem admits an algorithm whose query complexity is independent of the instance size (for an arbitrary constant ε > 0): :"Given a graph ''G'' on ''n'' vertices, decide if ''G'' is bipartite, or ''G'' cannot be made bipartite even after removing an arbitrary subset of at most \epsilon\tbinom n2 edges of ''G''." Property testing algorithms are central to the definition of probabilistically ch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamming Distance
In information theory, the Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of ''substitutions'' required to change one string into the other, or the minimum number of ''errors'' that could have transformed one string into the other. In a more general context, the Hamming distance is one of several string metrics for measuring the edit distance between two sequences. It is named after the American mathematician Richard Hamming. A major application is in coding theory, more specifically to block codes, in which the equal-length strings are vectors over a finite field. Definition The Hamming distance between two equal-length strings of symbols is the number of positions at which the corresponding symbols are different. Examples The symbols may be letters, bits, or decimal digits, among other possibilities. For example, the Hamming distance between: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximation Algorithms
In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In an overwhelming majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution. However, there are a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brute-force Search
In computer science, brute-force search or exhaustive search, also known as generate and test, is a very general problem-solving technique and algorithmic paradigm that consists of systematically enumerating all possible candidates for the solution and checking whether each candidate satisfies the problem's statement. A brute-force algorithm that finds the divisors of a natural number ''n'' would enumerate all integers from 1 to n, and check whether each of them divides ''n'' without remainder. A brute-force approach for the eight queens puzzle would examine all possible arrangements of 8 pieces on the 64-square chessboard and for each arrangement, check whether each (queen) piece can attack any other. While a brute-force search is simple to implement and will always find a solution if it exists, implementation costs are proportional to the number of candidate solutionswhich in many practical problems tends to grow very quickly as the size of the problem increases ( §Combinator ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perfect Graph
In graph theory, a perfect graph is a graph in which the chromatic number of every induced subgraph equals the order of the largest clique of that subgraph (clique number). Equivalently stated in symbolic terms an arbitrary graph G=(V,E) is perfect if and only if for all S\subseteq V we have \chi(G =\omega(G . The perfect graphs include many important families of graphs and serve to unify results relating colorings and cliques in those families. For instance, in all perfect graphs, the graph coloring problem, maximum clique problem, and maximum independent set problem can all be solved in polynomial time. In addition, several important min-max theorems in combinatorics, such as Dilworth's theorem, can be expressed in terms of the perfection of certain associated graphs. A graph G is 1-perfect if and only if \chi(G)=\omega(G). Then, G is perfect if and only if every induced subgraph of G is 1-perfect. Properties * By the perfect graph theorem, a graph G is perfect if and on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Graph Removal Lemma
In graph theory, the graph removal lemma states that when a graph contains few copies of a given subgraph, then all of the copies can be eliminated by removing a small number of edges. The special case in which the subgraph is a triangle is known as the triangle removal lemma. The graph removal lemma can be used to prove Roth's theorem on 3-term arithmetic progressions, and a generalization of it, the hypergraph removal lemma, can be used to prove Szemerédi's theorem. It also has applications to property testing. Formulation Let H be a graph with h vertices. The graph removal lemma states that for any \epsilon > 0, there exists a constant \delta = \delta(\epsilon, H) > 0 such that for any n-vertex graph G with fewer than \delta n^h subgraphs isomorphic to H, it is possible to eliminate all copies of H by removing at most \epsilon n^2 edges from G. An alternative way to state this is to say that for any n-vertex graph G with o(n^h) subgraphs isomorphic to H, it is possible to eli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Planar Graph
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points. Every graph that can be drawn on a plane can be drawn on the sphere as well, and vice versa, by means of stereographic projection. Plane graphs can be encoded by combinatorial maps or rotation systems. An equivalence class of topologically equivalent drawings on the sphere, usually with additional assumptions such as the absence of isthmuses, is called a pl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Coloring
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual. However, non-vertex coloring problems are often stated and studied as-is. This is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Glossary Of Graph Theory Terms
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges. Symbols A B C D E F G H I K L M N O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Induced Subgraph
In the mathematical field of graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges (from the original graph) connecting pairs of vertices in that subset. Definition Formally, let G=(V,E) be any graph, and let S\subset V be any subset of vertices of . Then the induced subgraph G is the graph whose vertex set is S and whose edge set consists of all of the edges in E that have both endpoints in S . That is, for any two vertices u,v\in S , u and v are adjacent in G if and only if they are adjacent in G . The same definition works for undirected graphs, directed graphs, and even multigraphs. The induced subgraph G may also be called the subgraph induced in G by S , or (if context makes the choice of G unambiguous) the induced subgraph of S . Examples Important types of induced subgraphs include the following. *Induced paths are induced subgraphs that are paths. The shortest path between ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hereditary Property
In mathematics, a hereditary property is a property of an object that is inherited by all of its subobjects, where the meaning of ''subobject'' depends on the context. These properties are particularly considered in topology and graph theory, but also in set theory. In topology In topology, a topological property is said to be ''hereditary'' if whenever a topological space has that property, then so does every subspace of it. If the latter is true only for closed subspaces, then the property is called ''weakly hereditary'' or ''closed-hereditary''. For example, second countability and metrisability are hereditary properties. Sequentiality and Hausdorff compactness are weakly hereditary, but not hereditary. Connectivity is not weakly hereditary. If ''P'' is a property of a topological space ''X'' and every subspace also has property ''P'', then ''X'' is said to be "hereditarily ''P''". In combinatorics and graph theory The notion of hereditary properties occurs throughout co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cut (graph Theory)
In graph theory, a cut is a partition of the vertices of a graph into two disjoint subsets. Any cut determines a cut-set, the set of edges that have one endpoint in each subset of the partition. These edges are said to cross the cut. In a connected graph, each cut-set determines a unique cut, and in some cases cuts are identified with their cut-sets rather than with their vertex partitions. In a flow network, an s–t cut is a cut that requires the ''source'' and the ''sink'' to be in different subsets, and its ''cut-set'' only consists of edges going from the source's side to the sink's side. The ''capacity'' of an s–t cut is defined as the sum of the capacity of each edge in the ''cut-set''. Definition A cut is a partition of of a graph into two subsets and . The cut-set of a cut is the set of edges that have one endpoint in and the other endpoint in . If and are specified vertices of the graph , then an cut is a cut in which belongs to the set and belongs to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]