Primary Field
   HOME
*





Primary Field
In theoretical physics, a primary field, also called a primary operator, or simply a primary, is a local operator in a conformal field theory which is annihilated by the part of the conformal algebra consisting of the lowering generators. From the representation theory point of view, a primary is the lowest dimension operator in a given representation of the conformal algebra. All other operators in a representation are called ''descendants''; they can be obtained by acting on the primary with the raising generators. History of the concept Primary fields in a ''D''-dimensional conformal field theory were introduced in 1969 by Mack and Salam where they were called ''interpolating fields''. They were then studied by Ferrara, Gatto, and Grillo who called them ''irreducible conformal tensors'', and by Mack who called them ''lowest weights''. Polyakov used an equivalent definition as fields which cannot be represented as derivatives of other fields. The modern terms ''primary fields ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert Einstein was concerned wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conformal Field Theory
A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified. Conformal field theory has important applications to condensed matter physics, statistical mechanics, quantum statistical mechanics, and string theory. Statistical and condensed matter systems are indeed often conformally invariant at their thermodynamic or quantum critical points. Scale invariance vs conformal invariance In quantum field theory, scale invariance is a common and natural symmetry, because any fixed point of the renormalization group is by definition scale invariant. Conformal symmetry is stronger than scale invariance, and one needs additional assumptions to argue that it should appear in nature. The basic idea behind its plausibility is that ''local'' scale invariant theories have their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conformal Algebra
In mathematical physics, the conformal symmetry of spacetime is expressed by an extension of the Poincaré group. The extension includes special conformal transformations and dilations. In three spatial plus one time dimensions, conformal symmetry has 15 degrees of freedom: ten for the Poincaré group, four for special conformal transformations, and one for a dilation. Harry Bateman and Ebenezer Cunningham were the first to study the conformal symmetry of Maxwell's equations. They called a generic expression of conformal symmetry a spherical wave transformation. General relativity in two spacetime dimensions also enjoys conformal symmetry. Generators The conformal group has the following representation: : \begin & M_ \equiv i(x_\mu\partial_\nu-x_\nu\partial_\mu) \,, \\ &P_\mu \equiv-i\partial_\mu \,, \\ &D \equiv-ix_\mu\partial^\mu \,, \\ &K_\mu \equiv i(x^2\partial_\mu-2x_\mu x_\nu\partial^\nu) \,, \end where M_ are the Lorentz generators, P_\mu generates translations, D g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Representation (mathematics)
In mathematics, a representation is a very general relationship that expresses similarities (or equivalences) between mathematical objects or structures. Roughly speaking, a collection ''Y'' of mathematical objects may be said to ''represent'' another collection ''X'' of objects, provided that the properties and relationships existing among the representing objects ''yi'' conform, in some consistent way, to those existing among the corresponding represented objects ''xi''. More specifically, given a set ''Π'' of properties and relations, a ''Π''-representation of some structure ''X'' is a structure ''Y'' that is the image of ''X'' under a homomorphism that preserves ''Π''. The label ''representation'' is sometimes also applied to the homomorphism itself (such as group homomorphism in group theory). Representation theory Perhaps the most well-developed example of this general notion is the subfield of abstract algebra called representation theory, which studies the representing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Two-dimensional Conformal Field Theory
A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations. In contrast to other types of conformal field theories, two-dimensional conformal field theories have infinite-dimensional symmetry algebras. In some cases, this allows them to be solved exactly, using the conformal bootstrap method. Notable two-dimensional conformal field theories include minimal models, Liouville theory, massless free bosonic theories, Wess–Zumino–Witten models, and certain sigma models. Basic structures Geometry Two-dimensional conformal field theories (CFTs) are defined on Riemann surfaces, where local conformal maps are holomorphic functions. While a CFT might conceivably exist only on a given Riemann surface, its existence on any surface other than the sphere implies its existence on all surfaces. Given a CFT, it is indeed possible to glue two Riemann surfaces where it exists, and obtain t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lorentz Group
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry: * The kinematical laws of special relativity * Maxwell's field equations in the theory of electromagnetism * The Dirac equation in the theory of the electron * The Standard Model of particle physics The Lorentz group expresses the fundamental symmetry of space and time of all known fundamental laws of nature. In small enough regions of spacetime where gravitational variances are negligible, physical laws are Lorentz invariant in the same manner as special relativity. Basic properties The Lorentz group is a subgroup of the Poincaré group—the group of all isometries of Minkowski spacetime. Lorentz transformations are, precisely, iso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Virasoro Algebra
In mathematics, the Virasoro algebra (named after the physicist Miguel Ángel Virasoro) is a complex Lie algebra and the unique central extension of the Witt algebra. It is widely used in two-dimensional conformal field theory and in string theory. Definition The Virasoro algebra is spanned by generators for and the central charge . These generators satisfy ,L_n0 and The factor of 1/12 is merely a matter of convention. For a derivation of the algebra as the unique central extension of the Witt algebra, see derivation of the Virasoro algebra. The Virasoro algebra has a presentation in terms of two generators (e.g. 3 and −2) and six relations. Representation theory Highest weight representations A highest weight representation of the Virasoro algebra is a representation generated by a primary state: a vector v such that : L_ v = 0, \quad L_0 v = hv, where the number is called the conformal dimension or conformal weight of v.P. Di Francesco, P. Mathieu, and D. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Super Virasoro Algebra
In mathematical physics, a super Virasoro algebra is an extension of the Virasoro algebra (named after Miguel Ángel Virasoro) to a Lie superalgebra. There are two extensions with particular importance in superstring theory: the Ramond algebra (named after Pierre Ramond) and the Neveu–Schwarz algebra (named after André Neveu and John Henry Schwarz). Both algebras have ''N'' = 1 supersymmetry and an even part given by the Virasoro algebra. They describe the symmetries of a superstring in two different sectors, called the Ramond sector and the Neveu–Schwarz sector. The ''N'' = 1 super Virasoro algebras There are two minimal extensions of the Virasoro algebra with ''N'' = 1 supersymmetry: the Ramond algebra and the Neveu–Schwarz algebra. They are both Lie superalgebras whose even part is the Virasoro algebra: this Lie algebra has a basis consisting of a central element ''C'' and generators ''L''''m'' (for integer ''m'') satisfying L_m , L_n = ( m - n ) L_ + \frac m ( m^2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]