Pretzel Link
   HOME
*



picture info

Pretzel Link
In the mathematical theory of knots, a pretzel link is a special kind of link. It consists of a finite number tangles made of two intertwined circular helices. The tangles are connected cyclicly, the first component of the first tangle is connected to the second component of the second tangle, etc., with the first component of the last tangle connected to the second component of the first. A pretzel link which is also a knot (i.e. a link with one component) is a pretzel knot. Each tangle is characterized by its number of twists, positive if they are counter-clockwise or left-handed, negative if clockwise or right-handed. In the standard projection of the (p_1,\,p_2,\dots,\,p_n) pretzel link, there are p_1 left-handed crossings in the first , tangle, p_2 in the second, and, in general, p_n in the nth. A pretzel link can also be described as a Montesinos link with integer tangles. Some basic results The (p_1,p_2,\dots,p_n) pretzel link is a knot iff both n and all the p_i ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pretzel Knot
A Pretzel knot may refer to: * Pretzel link: a concept in mathematics * Soft pretzel with garlic * Stafford knot The Stafford knot, more commonly known as the Staffordshire knot, is a distinctive three-looped knot that is the traditional symbol of the English county of Staffordshire and of its county town, Stafford. It is a particular representation of the s ...
: a rope knot used in sailing and heraldry {{Disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Knot (mathematics)
In knot theory, the square knot is a composite knot obtained by taking the connected sum of a trefoil knot with its reflection. It is closely related to the granny knot, which is also a connected sum of two trefoils. Because the trefoil knot is the simplest nontrivial knot, the square knot and the granny knot are the simplest of all composite knots. The square knot is the mathematical version of the common reef knot. Construction The square knot can be constructed from two trefoil knots, one of which must be left-handed and the other right-handed. Each of the two knots is cut, and then the loose ends are joined together pairwise. The resulting connected sum is the square knot. It is important that the original trefoil knots be mirror images of one another. If two identical trefoil knots are used instead, the result is a granny knot. Properties The square knot is amphichiral, meaning that it is indistinguishable from its own mirror image. The crossing number of a squ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proceedings Of The American Mathematical Society
''Proceedings of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. As a requirement, all articles must be at most 15 printed pages. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor of 0.813. Scope ''Proceedings of the American Mathematical Society'' publishes articles from all areas of pure and applied mathematics, including topology, geometry, analysis, algebra, number theory, combinatorics, logic, probability and statistics. Abstracting and indexing This journal is indexed in the following databases:Indexing and archiving notes
2011. American Mathematical Society. *

picture info

Whitehead Link
In knot theory, the Whitehead link, named for J. H. C. Whitehead, is one of the most basic links. It can be drawn as an alternating link with five crossings, from the overlay of a circle and a figure-eight shaped loop. Structure A common way of describing this knot is formed by overlaying a figure-eight shaped loop with another circular loop surrounding the crossing of the figure-eight. The above-below relation between these two unknots is then set as an alternating link, with the consecutive crossings on each loop alternating between under and over. This drawing has five crossings, one of which is the self-crossing of the figure-eight curve, which does not count towards the linking number. Because the remaining crossings have equal numbers of under and over crossings on each loop, its linking number is 0. It is not isotopic to the unlink, but it is link homotopic to the unlink. Although this construction of the knot treats its two loops differently from each other, the two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Catalan's Constant
In mathematics, Catalan's constant , is defined by : G = \beta(2) = \sum_^ \frac = \frac - \frac + \frac - \frac + \frac - \cdots, where is the Dirichlet beta function. Its numerical value is approximately : It is not known whether is irrational number, irrational, let alone transcendental number, transcendental. has been called "arguably the most basic constant whose irrationality and transcendence (though strongly suspected) remain unproven". Catalan's constant was named after Eugène Charles Catalan, who found quickly-converging series for its calculation and published a memoir on it in 1865. Uses In low-dimensional topology, Catalan's constant is 1/4 of the volume of an ideal polyhedron, ideal hyperbolic octahedron, and therefore 1/4 of the hyperbolic volume of the complement of the Whitehead link. It is 1/8 of the volume of the complement of the Borromean rings. In combinatorics and statistical mechanics, it arises in connection with counting domino tilings, spannin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Volume
In the mathematical field of knot theory, the hyperbolic volume of a hyperbolic link is the volume of the link's complement with respect to its complete hyperbolic metric. The volume is necessarily a finite real number, and is a topological invariant of the link. As a link invariant, it was first studied by William Thurston in connection with his geometrization conjecture. Knot and link invariant A hyperbolic link is a link in the 3-sphere whose complement (the space formed by removing the link from the 3-sphere) can be given a complete Riemannian metric of constant negative curvature, giving it the structure of a hyperbolic 3-manifold, a quotient of hyperbolic space by a group acting freely and discontinuously on it. The components of the link will become cusps of the 3-manifold, and the manifold itself will have finite volume. By Mostow rigidity, when a link complement has a hyperbolic structure, this structure is uniquely determined, and any geometric invariants of the stru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

(−2,3,7) Pretzel Knot
In geometric topology, a branch of mathematics, the (−2, 3, 7) pretzel knot, sometimes called the Fintushel–Stern knot (after Ron Fintushel and Ronald J. Stern), is an important example of a pretzel knot which exhibits various interesting phenomena under three-dimensional and four-dimensional surgery constructions. Mathematical properties The (−2, 3, 7) pretzel knot has 7 ''exceptional'' slopes, Dehn surgery slopes which give non-hyperbolic 3-manifolds. Among the enumerated knots, the only other hyperbolic knot with 7 or more is the figure-eight knot The figure-eight knot or figure-of-eight knot is a type of stopper knot. It is very important in both sailing and rock climbing as a method of stopping ropes from running out of retaining devices. Like the overhand knot, which will jam under st ..., which has 10. All other hyperbolic knots are conjectured to have at most 6 exceptional slopes. References Further reading * Kirby, R., ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dehn Surgery
In topology, a branch of mathematics, a Dehn surgery, named after Max Dehn, is a construction used to modify 3-manifolds. The process takes as input a 3-manifold together with a link. It is often conceptualized as two steps: ''drilling'' then ''filling''. Definitions * Given a 3-manifold M and a link L \subset M, the manifold M drilled along L is obtained by removing an open tubular neighborhood of L from M. If L = L_1\cup\dots\cup L_k , the drilled manifold has k torus boundary components T_1\cup\dots\cup T_k. The manifold ''M drilled along L'' is also known as the link complement, since if one removed the corresponding closed tubular neighborhood from M, one obtains a manifold diffeomorphic to M \setminus L. * Given a 3-manifold whose boundary is made of 2-tori T_1\cup\dots\cup T_k, we may glue in one solid torus by a homeomorphism (resp. diffeomorphism) of its boundary to each of the torus boundary components T_i of the original 3-manifold. There are many inequivalent way ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

3-manifold
In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below. Introduction Definition A topological space ''X'' is a 3-manifold if it is a second-countable Hausdorff space and if every point in ''X'' has a neighbourhood that is homeomorphic to Euclidean 3-space. Mathematical theory of 3-manifolds The topological, piecewise-linear, and smooth categories are all equivalent in three dimensions, so little distinction is made in whether we are dealing with say, topological 3-manifolds, or smooth 3-manifolds. Phenomena in three dimensions can be strikingly different from phenomena in other dimensions, and so there is a prevalence of very specialized techniques that do not generalize to dimensions g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


José María Montesinos Amilibia
José is a predominantly Spanish and Portuguese form of the given name Joseph. While spelled alike, this name is pronounced differently in each language: Spanish ; Portuguese (or ). In French, the name ''José'', pronounced , is an old vernacular form of Joseph, which is also in current usage as a given name. José is also commonly used as part of masculine name composites, such as José Manuel, José Maria or Antonio José, and also in female name composites like Maria José or Marie-José. The feminine written form is ''Josée'' as in French. In Netherlandic Dutch, however, ''José'' is a feminine given name and is pronounced ; it may occur as part of name composites like Marie-José or as a feminine first name in its own right; it can also be short for the name ''Josina'' and even a Dutch hypocorism of the name ''Johanna''. In England, Jose is originally a Romano-Celtic surname, and people with this family name can usually be found in, or traced to, the English county of C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Tangles
In mathematics, a tangle is generally one of two related concepts: * In John Conway's definition, an ''n''-tangle is a proper embedding of the disjoint union of ''n'' arcs into a 3-ball; the embedding must send the endpoints of the arcs to 2''n'' marked points on the ball's boundary. * In link theory, a tangle is an embedding of ''n'' arcs and ''m'' circles into \mathbf^2 \times ,1/math> – the difference from the previous definition is that it includes circles as well as arcs, and partitions the boundary into two (isomorphic) pieces, which is algebraically more convenient – it allows one to add tangles by stacking them, for instance. (A quite different use of 'tangle' appears in Graph minors X. Obstructions to tree-decomposition by N. Robertson and P. D. Seymour, '' Journal of Combinatorial Theory'' B 52 (1991) 153–190, who used it to describe separation in graphs. This usage has been extended to matroids.) The balance of this article discusses Conway's sense of tangles ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]