Polytopological Space
   HOME
*





Polytopological Space
In general topology, a polytopological space consists of a set X together with a family \_ of topologies on X that is linearly ordered by the inclusion relation (I is an arbitrary index set). It is usually assumed that the topologies are in non-decreasing order, but some authors prefer to put the associated closure operators \_ in non-decreasing order (operators k_i and k_j satisfy k_i\leq k_j if and only if k_iA\subseteq k_jA for all A\subseteq X), in which case the topologies have to be non-increasing. Polytopological spaces were introduced in 2008 by the philosopher Thomas Icard for the purpose of defining a topological model of Japaridze's polymodal logic (GLP). They subsequently became an object of study in their own right, specifically in connection with Kuratowski's closure-complement problem. Definition An L-topological space (X,\tau) is a set X together with a monotone map \tau:L\to Top(X) where (L,\leq) is a partially ordered set and Top(X) is the set of all possib ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Topology
In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology. The fundamental concepts in point-set topology are ''continuity'', ''compactness'', and ''connectedness'': * Continuous functions, intuitively, take nearby points to nearby points. * Compact sets are those that can be covered by finitely many sets of arbitrarily small size. * Connected sets are sets that cannot be divided into two pieces that are far apart. The terms 'nearby', 'arbitrarily small', and 'far apart' can all be made precise by using the concept of open sets. If we change the definition of 'open set', we change what continuous functions, compact sets, and connected sets are. Each choice of definition for 'open set' is called a ''t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Model Theory
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory. Compared to other areas of mathematical logic such as proof theory, model theory is often less concerned with formal rigour and closer in spirit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


N-topological Space
In mathematics, an ''N''-topological space is a set equipped with ''N'' arbitrary topologies. If ''τ''1, ''τ''2, ..., ''τ''''N'' are ''N'' topologies defined on a nonempty set X, then the ''N''-topological space is denoted by (''X'',''τ''1,''τ''2,...,''τ''''N''). For ''N'' = 1, the structure is simply a topological space. For ''N'' = 2, the structure becomes a bitopological space In mathematics, a bitopological space is a set endowed with ''two'' topologies. Typically, if the set is X and the topologies are \sigma and \tau then the bitopological space is referred to as (X,\sigma,\tau). The notion was introduced by J. C. Kel ... introduced by J. C. Kelly. Example Let ''X'' =  be any finite set. Suppose ''A''''r'' = . Then the collection ''τ''1 =  will be a topology on ''X''. If ''τ''1, ''τ''2, ..., ''τ''''m'' be ''m'' such topologies (chain topologies) defined on ''X'', then the structure (''X' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega that is greater than every natural number, along with ordinal numbers \omega + 1, \omega + 2, etc., which are even greater than \omega. A linear order such that every subset has a least element is called a well-order. The axiom of choice implies that every set can be well-ordered, and given two well-ordered sets, one is isomorphic to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partially Ordered Set
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a Set (mathematics), set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of Comparability, comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monotonic Function
In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order theory. In calculus and analysis In calculus, a function f defined on a subset of the real numbers with real values is called ''monotonic'' if and only if it is either entirely non-increasing, or entirely non-decreasing. That is, as per Fig. 1, a function that increases monotonically does not exclusively have to increase, it simply must not decrease. A function is called ''monotonically increasing'' (also ''increasing'' or ''non-decreasing'') if for all x and y such that x \leq y one has f\!\left(x\right) \leq f\!\left(y\right), so f preserves the order (see Figure 1). Likewise, a function is called ''monotonically decreasing'' (also ''decreasing'' or ''non-increasing'') if, whenever x \leq y, then f\!\left(x\right) \geq f\!\left(y\ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kuratowski's Closure-complement Problem
In point-set topology, Kuratowski's closure-complement problem asks for the largest number of distinct sets obtainable by repeatedly applying the set operations of closure and complement to a given starting subset of a topological space. The answer is 14. This result was first published by Kazimierz Kuratowski in 1922. It gained additional exposure in Kuratowski's fundamental monograph ''Topologie'' (first published in French in 1933; the first English translation appeared in 1966) before achieving fame as a textbook exercise in John L. Kelley's 1955 classic, ''General Topology''. Proof Letting S denote an arbitrary subset of a topological space, write kS for the closure of S, and cS for the complement of S. The following three identities imply that no more than 14 distinct sets are obtainable: # kkS=kS. (The closure operation is idempotent.) # ccS=S. (The complement operation is an involution.) # kckckckcS=kckcS. (Or equivalently kckckckS=kckckckccS=kckS, using identity (2)). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Japaridze's Polymodal Logic
Japaridze's polymodal logic (GLP) is a system of provability logic with infinitely many provability modalities. This system has played an important role in some applications of provability algebras in proof theory, and has been extensively studied since the late 1980s. It is named after Giorgi Japaridze. Language and axiomatization The language of GLP extends that of the language of classical propositional logic by including the infinite series of necessity operators. Their dual possibility operators are defined by . The axioms of GLP are all classical tautologies and all formulas of one of the following forms: * * * * And the rules of inference are: * From and conclude * From conclude Provability semantics Consider a sufficiently strong first-order theory such as Peano Arithmetic . Define the series of theories as follows: * is * is the extension of through the additional axioms for each formula such that proves all of the formulas For each , let be a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thomas Icard
Thomas may refer to: People * List of people with given name Thomas * Thomas (name) * Thomas (surname) * Saint Thomas (other) * Thomas Aquinas (1225–1274) Italian Dominican friar, philosopher, and Doctor of the Church * Thomas the Apostle * Thomas (bishop of the East Angles) (fl. 640s–650s), medieval Bishop of the East Angles * Thomas (Archdeacon of Barnstaple) (fl. 1203), Archdeacon of Barnstaple * Thomas, Count of Perche (1195–1217), Count of Perche * Thomas (bishop of Finland) (1248), first known Bishop of Finland * Thomas, Earl of Mar (1330–1377), 14th-century Earl, Aberdeen, Scotland Geography Places in the United States * Thomas, Illinois * Thomas, Indiana * Thomas, Oklahoma * Thomas, Oregon * Thomas, South Dakota * Thomas, Virginia * Thomas, Washington * Thomas, West Virginia * Thomas County (other) * Thomas Township (other) Elsewhere * Thomas Glacier (Greenland) Arts, entertainment, and media * ''Thomas'' (Burton novel) 1969 novel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set (mathematics)
A set is the mathematical model for a collection of different things; a set contains '' elements'' or ''members'', which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. History The concept of a set emerged in mathematics at the end of the 19th century. The German word for set, ''Menge'', was coined by Bernard Bolzano in his work ''Paradoxes of the Infinite''. Georg Cantor, one of the founders of set theory, gave the following defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Operator (mathematics)
In mathematics, an operator is generally a mapping or function that acts on elements of a space to produce elements of another space (possibly and sometimes required to be the same space). There is no general definition of an ''operator'', but the term is often used in place of ''function'' when the domain is a set of functions or other structured objects. Also, the domain of an operator is often difficult to be explicitly characterized (for example in the case of an integral operator), and may be extended to related objects (an operator that acts on functions may act also on differential equations whose solutions are functions that satisfy the equation). See Operator (physics) for other examples. The most basic operators are linear maps, which act on vector spaces. Linear operators refer to linear maps whose domain and range are the same space, for example \R^n to \R^n. Such operators often preserve properties, such as continuity. For example, differentiation and indef ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closure (topology)
In topology, the closure of a subset of points in a topological space consists of all points in together with all limit points of . The closure of may equivalently be defined as the union of and its boundary, and also as the intersection of all closed sets containing . Intuitively, the closure can be thought of as all the points that are either in or "near" . A point which is in the closure of is a point of closure of . The notion of closure is in many ways dual to the notion of interior. Definitions Point of closure For S as a subset of a Euclidean space, x is a point of closure of S if every open ball centered at x contains a point of S (this point can be x itself). This definition generalizes to any subset S of a metric space X. Fully expressed, for X as a metric space with metric d, x is a point of closure of S if for every r > 0 there exists some s \in S such that the distance d(x, s) < r (x = s is allowed). Another way to express this is to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]