Polonium Trioxide
   HOME
*





Polonium Trioxide
Polonium trioxide (also known as polonium(VI) oxide) is a chemical compound with the formula Po O3. It is one of three oxides of polonium, the other two being polonium monoxide (PoO) and polonium dioxide (PoO2). It is an interchalcogen. It has so far only been detected in trace amounts. Preparation It has been reported that trace quantities of polonium trioxide form during the anodic deposition of polonium from acidic solutions. Although there is no experimental evidence for this, the fact that the deposit dissolves in hydrogen peroxide suggests that it contains polonium in a high oxidation state. It has been predicted that polonium trioxide may be formed by heating polonium dioxide and chromium trioxide together in air. Difficulty of preparation of polonium(VI) compounds It is very difficult to oxidize polonium beyond Po(IV); for example, the only hexahalide of polonium is the hexafluoride, PoF6, and fluorine is already the most electronegative element (though polonium hex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polonium
Polonium is a chemical element with the symbol Po and atomic number 84. Polonium is a chalcogen. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic character resembles that of its horizontal neighbors in the periodic table: thallium, lead, and bismuth. Due to the short half-life of all its isotopes, its natural occurrence is limited to tiny traces of the fleeting polonium-210 (with a half-life of 138 days) in uranium ores, as it is the penultimate daughter of natural uranium-238. Though slightly longer-lived isotopes exist, they are much more difficult to produce. Today, polonium is usually produced in milligram quantities by the neutron irradiation of bismuth. Due to its intense radioactivity, which results in the radiolysis of chemical bonds and radioactive self-heating, its chemistry has mostly been investigated on the trace scale only. Polonium was discovered in July 1898 by Marie SkÅ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hexafluoride
A hexafluoride is a chemical compound with the general formula QXnF6, QXnF6m−, or QXnF6m+. Many molecules fit this formula. An important hexafluoride is hexafluorosilicic acid (H2SiF6), which is a byproduct of the mining of phosphate rock. In the nuclear industry, uranium hexafluoride (UF6) is an important intermediate in the purification of this element. Hexafluoride cations Cationic hexafluorides exist but are rarer than neutral or anionic hexafluorides. Examples are the hexafluorochlorine (ClF6+), and hexafluorobromine (BrF6+) cations. Hexafluoride anions Many elements form anionic hexafluorides. Members of commercial interest are hexafluorophosphate (PF6−) and hexafluorosilicate (SiF62−). Many transition metals form hexafluoride anions. Often the monoanions are generated by reduction of the neutral hexafluorides. For example, PtF6− arises by reduction of PtF6 by O2. Because of its highly basic nature and its resistance to oxidation, the fluoride ligand stabilize ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polonium Compounds
Polonium is a chemical element with the symbol Po and atomic number 84. Polonium is a chalcogen. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic character resembles that of its horizontal neighbors in the periodic table: thallium, lead, and bismuth. Due to the short half-life of all its isotopes, its natural occurrence is limited to tiny traces of the fleeting polonium-210 (with a half-life of 138 days) in uranium ores, as it is the penultimate daughter of natural uranium-238. Though slightly longer-lived isotopes exist, they are much more difficult to produce. Today, polonium is usually produced in milligram quantities by the neutron irradiation of bismuth. Due to its intense radioactivity, which results in the radiolysis of chemical bonds and radioactive self-heating, its chemistry has mostly been investigated on the trace scale only. Polonium was discovered in July 1898 by Marie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polonium-209
Polonium (84Po) has 42 isotopes, all of which are radioactive, with between 186 and 227 nucleons. 210Po with a half-life of 138.376 days has the longest half-life of naturally occurring polonium. 209Po, with a half-life of 125.2 years, has the longest half-life of all isotopes of polonium. 209Po and 208Po (half-life 2.9 years) can be made through proton bombardment of bismuth in a cyclotron. List of isotopes , - , 186Po , , style="text-align:right" , 84 , style="text-align:right" , 102 , 186.0044(18) , 34(12) Î¼s , α , 182Pb , 0+ , , - , 187Po , , style="text-align:right" , 84 , style="text-align:right" , 103 , 187.00304(30) , 1.40(0.25) ms , α , 183Pb , (1/2-), (5/2-) , , - , style="text-indent:1em" , 187mPo , , colspan="3" style="text-indent:2em" , 4(27) keV , 0.5 ms , , , 13/2+# , , - , 188Po , , style="text-align:right" , 84 , style="text-align:right" , 104 , 187.999422(21) , 430(180) Î¼s .40(+20−15) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polonium-208
Polonium (84Po) has 42 isotopes, all of which are radioactive, with between 186 and 227 nucleons. 210Po with a half-life of 138.376 days has the longest half-life of naturally occurring polonium. 209Po, with a half-life of 125.2 years, has the longest half-life of all isotopes of polonium. 209Po and 208Po (half-life 2.9 years) can be made through proton bombardment of bismuth in a cyclotron. List of isotopes , - , 186Po , , style="text-align:right" , 84 , style="text-align:right" , 102 , 186.0044(18) , 34(12) Î¼s , α , 182Pb , 0+ , , - , 187Po , , style="text-align:right" , 84 , style="text-align:right" , 103 , 187.00304(30) , 1.40(0.25) ms , α , 183Pb , (1/2-), (5/2-) , , - , style="text-indent:1em" , 187mPo , , colspan="3" style="text-indent:2em" , 4(27) keV , 0.5 ms , , , 13/2+# , , - , 188Po , , style="text-align:right" , 84 , style="text-align:right" , 104 , 187.999422(21) , 430(180) Î¼s .40(+20−15)&nb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Curium
Curium is a transuranic, radioactive chemical element with the symbol Cm and atomic number 96. This actinide element was named after eminent scientists Marie and Pierre Curie, both known for their research on radioactivity. Curium was first intentionally made by the team of Glenn T. Seaborg, Ralph A. James, and Albert Ghiorso in 1944, using the cyclotron at Berkeley. They bombarded the newly discovered element plutonium (the isotope 239Pu) with alpha particles. This was then sent to the Metallurgical Laboratory at University of Chicago where a tiny sample of curium was eventually separated and identified. The discovery was kept secret until after the end of World War II. The news was released to the public in November 1947. Most curium is produced by bombarding uranium or plutonium with neutrons in nuclear reactors – one tonne of spent nuclear fuel contains ~20 grams of curium. Curium is a hard, dense, silvery metal with a high melting and boiling point for an actinide. It ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isotope
Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) due to different numbers of neutrons in their nuclei. While all isotopes of a given element have almost the same chemical properties, they have different atomic masses and physical properties. The term isotope is formed from the Greek roots isos ( ἴσος "equal") and topos ( τόπος "place"), meaning "the same place"; thus, the meaning behind the name is that different isotopes of a single element occupy the same position on the periodic table. It was coined by Scottish doctor and writer Margaret Todd in 1913 in a suggestion to the British chemist Frederick Soddy. The number of protons within the atom's nucleus is called its atomic number and is equal to the number of electrons in the neutral (non-ionized) atom. Each atomic numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polonium-210
Polonium-210 (210Po, Po-210, historically radium F) is an isotope of polonium. It undergoes alpha decay to stable 206Pb with a half-life of 138.376 days (about months), the longest half-life of all naturally occurring polonium isotopes. First identified in 1898, and also marking the discovery of the element polonium, 210Po is generated in the decay chain of uranium-238 and radium-226. 210Po is a prominent contaminant in the environment, mostly affecting seafood and tobacco. Its extreme toxicity is attributed to intense radioactivity, capable of severely harming humans. History In 1898, Marie and Pierre Curie discovered a strongly radioactive substance in pitchblende and determined that it was a new element; it was one of the first radioactive elements discovered. Having identified it as such, they named the element polonium after Marie's home country, Poland. Willy Marckwald discovered a similar radioactive activity in 1902 and named it radio-tellurium, and at roughly the sa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tellurate
In chemistry tellurate is a compound containing an oxyanion of tellurium where tellurium has an oxidation number of +6. In the naming of inorganic compounds it is a suffix that indicates a polyatomic anion with a central tellurium atom.Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005
– Full text (PDF)


Tellurium oxyanions

Historically the name tellurate was only applied to oxyanions of tellurium with +6, formally derived from , and the name

Selenate
The selenate ion is . Selenates are analogous to sulfates and have similar chemistry. They are highly soluble in aqueous solutions at ambient temperatures. Unlike sulfate, selenate is a somewhat good oxidizer; it can be reduced to selenite or selenium. In strongly acidic conditions, the hydrogen selenate ion, , is formed. It corresponds to the selenic acid, H2SeO4, which is a strong acid and can in its concentrated form dissolve gold. The element selenium exhibits several valence states. Selenate is the least reduced, followed by selenite, and elemental selenium; selenide is even more reduced than elemental selenium. The valence state is an important factor to the toxicity of selenium. Selenate is the form required by organisms that need selenium as a micronutrient. These organisms have the ability to acquire, metabolize and excrete selenium. The level at which selenium becomes toxic varies from species to species and is related to other environmental factors like pH a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sulfate
The sulfate or sulphate ion is a polyatomic anion with the empirical formula . Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many are prepared from that acid. Spelling "Sulfate" is the spelling recommended by IUPAC, but "sulphate" was traditionally used in British English. Structure The sulfate anion consists of a central sulfur atom surrounded by four equivalent oxygen atoms in a tetrahedral arrangement. The symmetry is the same as that of methane. The sulfur atom is in the +6 oxidation state while the four oxygen atoms are each in the −2 state. The sulfate ion carries an overall charge of −2 and it is the conjugate base of the bisulfate (or hydrogensulfate) ion, , which is in turn the conjugate base of , sulfuric acid. Organic sulfate esters, such as dimethyl sulfate, are covalent compounds and esters of sulfuric acid. The tetrahedral molecular geometry of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Anion
An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convention. The net charge of an ion is not zero because its total number of electrons is unequal to its total number of protons. A cation is a positively charged ion with fewer electrons than protons while an anion is a negatively charged ion with more electrons than protons. Opposite electric charges are pulled towards one another by electrostatic force, so cations and anions attract each other and readily form ionic compounds. Ions consisting of only a single atom are termed atomic or monatomic ions, while two or more atoms form molecular ions or polyatomic ions. In the case of physical ionization in a fluid (gas or liquid), "ion pairs" are created by spontaneous molecule collisions, where each generated pair consists of a free electron and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]