Periodic Group
   HOME
*





Periodic Group
In group theory, a branch of mathematics, a torsion group or a periodic group is a group in which every element has finite order. The exponent of such a group, if it exists, is the least common multiple of the orders of the elements. For example, it follows from Lagrange's theorem that every finite group is periodic and it has an exponent dividing its order. Infinite examples Examples of infinite periodic groups include the additive group of the ring of polynomials over a finite field, and the quotient group of the rationals by the integers, as well as their direct summands, the Prüfer groups. Another example is the direct sum of all dihedral groups. None of these examples has a finite generating set. Explicit examples of finitely generated infinite periodic groups were constructed by Golod, based on joint work with Shafarevich, see Golod–Shafarevich theorem, and by Aleshin and Grigorchuk using automata. These groups have infinite exponent; examples with finite expo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Group
Finite is the opposite of infinite. It may refer to: * Finite number (other) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Groves from the album '' Invisible Empires'' See also * * Nonfinite (other) Nonfinite is the opposite of finite * a nonfinite verb is a verb that is not capable of serving as the main verb in an independent clause * a non-finite clause In linguistics, a non-finite clause is a dependent or embedded clause that represen ... {{disambiguation fr:Fini it:Finito ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Torsion (algebra)
In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring. The torsion submodule of a module is the submodule formed by the torsion elements. A torsion module is a module that equals its torsion submodule. A module is torsion-free if its torsion submodule comprises only the zero element. This terminology is more commonly used for modules over a domain, that is, when the regular elements of the ring are all its nonzero elements. This terminology applies to abelian groups (with "module" and "submodule" replaced by "group" and "subgroup"). This is allowed by the fact that the abelian groups are the modules over the ring of integers (in fact, this is the origin of the terminology, that has been introduced for abelian groups before being generalized to modules). In the case of groups that are noncommutative, a ''torsion element'' is an element of finite order. Contrary to the commuta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Torsion-free Abelian Group
In mathematics, specifically in abstract algebra, a torsion-free abelian group is an abelian group which has no non-trivial torsion elements; that is, a group in which the group operation is commutative and the identity element is the only element with finite order. While finitely generated abelian groups are completely classified, not much is known about infinitely generated abelian groups, even in the torsion-free countable case. Definitions An abelian group \langle G, + ,0\rangle is said to be torsion-free if no element other than the identity e is of finite order. Explicitly, for any n > 0, the only element x \in G for which nx = 0 is x = 0. A natural example of a torsion-free group is \langle \mathbb Z,+,0\rangle , as only the integer 0 can be added to itself finitely many times to reach 0. More generally, the free abelian group \mathbb Z^r is torsion-free for any r \in \mathbb N. An important step in the proof of the classification of finitely generated abelia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Torsion Abelian Group
In abstract algebra, a torsion abelian group is an abelian group in which every element has finite order.Dummit, David; Foote, Richard. ''Abstract Algebra'', , pp. 369 For example, the torsion subgroup of an abelian group is a torsion abelian group. See also * Betti number In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicia ... References {{abstract-algebra-stub Abelian group theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation \cdot that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The symbo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Torsion Subgroup
In the theory of abelian groups, the torsion subgroup ''AT'' of an abelian group ''A'' is the subgroup of ''A'' consisting of all elements that have finite order (the torsion elements of ''A''). An abelian group ''A'' is called a torsion group (or periodic group) if every element of ''A'' has finite order and is called torsion-free if every element of ''A'' except the identity is of infinite order. The proof that ''AT'' is closed under the group operation relies on the commutativity of the operation (see examples section). If ''A'' is abelian, then the torsion subgroup ''T'' is a fully characteristic subgroup of ''A'' and the factor group ''A''/''T'' is torsion-free. There is a covariant functor from the category of abelian groups to the category of torsion groups that sends every group to its torsion subgroup and every homomorphism to its restriction to the torsion subgroup. There is another covariant functor from the category of abelian groups to the category of torsion-free gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compactness Theorem
In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful (but generally not effective) method for constructing models of any set of sentences that is finitely consistent. The compactness theorem for the propositional calculus is a consequence of Tychonoff's theorem (which says that the product of compact spaces is compact) applied to compact Stone spaces, hence the theorem's name. Likewise, it is analogous to the finite intersection property characterization of compactness in topological spaces: a collection of closed sets in a compact space has a non-empty intersection if every finite subcollection has a non-empty intersection. The compactness theorem is one of the two key properties, along with the downward Löwenheim–Skolem theorem, that is used in Lindström's theorem to characterize first-order logic. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Disjunction
In logic, disjunction is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is raining or it is snowing" can be represented in logic using the disjunctive formula R \lor S , assuming that R abbreviates "it is raining" and S abbreviates "it is snowing". In classical logic, disjunction is given a truth functional semantics according to which a formula \phi \lor \psi is true unless both \phi and \psi are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an ''inclusive'' interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems including Aristotle's sea battle argument, Heisenberg's uncertainty principle, as well ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of ax ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Linear Group
In mathematics, a matrix group is a group ''G'' consisting of invertible matrices over a specified field ''K'', with the operation of matrix multiplication. A linear group is a group that is isomorphic to a matrix group (that is, admitting a faithful, finite-dimensional representation over ''K''). Any finite group is linear, because it can be realized by permutation matrices using Cayley's theorem. Among infinite groups, linear groups form an interesting and tractable class. Examples of groups that are not linear include groups which are "too big" (for example, the group of permutations of an infinite set), or which exhibit some pathological behavior (for example, finitely generated infinite torsion groups). Definition and basic examples A group ''G'' is said to be ''linear'' if there exists a field ''K'', an integer ''d'' and an injective homomorphism from ''G'' to the general linear group GL''d''(''K'') (a faithful linear representation of dimension ''d'' over ''K''): if ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finitely-generated Group
In algebra, a finitely generated group is a group ''G'' that has some finite generating set ''S'' so that every element of ''G'' can be written as the combination (under the group operation) of finitely many elements of ''S'' and of inverses of such elements. By definition, every finite group is finitely generated, since ''S'' can be taken to be ''G'' itself. Every infinite finitely generated group must be countable but countable groups need not be finitely generated. The additive group of rational numbers Q is an example of a countable group that is not finitely generated. Examples * Every quotient of a finitely generated group ''G'' is finitely generated; the quotient group is generated by the images of the generators of ''G'' under the canonical projection. * A subgroup of a finitely generated group need not be finitely generated. * A group that is generated by a single element is called cyclic. Every infinite cyclic group is isomorphic to the additive group of the intege ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]