Perfectly Normal Space
   HOME
*



picture info

Perfectly Normal Space
In topology and related branches of mathematics, a normal space is a topological space ''X'' that satisfies Axiom T4: every two disjoint closed sets of ''X'' have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces. Definitions A topological space ''X'' is a normal space if, given any disjoint closed set In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric spac ...s ''E'' and ''F'', there are neighbourhood (topology), neighbourhoods ''U'' of ''E'' and ''V'' of ''F'' that are also disjoint. More intuitively, this condition says that ''E'' and ''F'' can be separated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a ''topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; connectedne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Zero Set
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is the solution to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f of degree two, defined by f(x)=x^2-5x+6 has the two roots (or zeros) that are 2 and 3. f(2)=2^2-5\times 2+6= 0\textf(3)=3^2-5\times 3+6=0. If the function maps real numbers to real numbers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudometrisable Space
In mathematics, a pseudometric space is a generalization of a metric space in which the distance between two distinct points can be zero. Pseudometric spaces were introduced by Đuro Kurepa in 1934. In the same way as every normed space is a metric space, every seminormed space is a pseudometric space. Because of this analogy the term semimetric space (which has a different meaning in topology) is sometimes used as a synonym, especially in functional analysis. When a topology is generated using a family of pseudometrics, the space is called a gauge space. Definition A pseudometric space (X,d) is a set X together with a non-negative real-valued function d : X \times X \longrightarrow \R_, called a , such that for every x, y, z \in X, #d(x,x) = 0. #''Symmetry'': d(x,y) = d(y,x) #''Subadditivity''/''Triangle inequality'': d(x,z) \leq d(x,y) + d(y,z) Unlike a metric space, points in a pseudometric space need not be distinguishable; that is, one may have d(x, y) = 0 for distinct va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudometric Space
In mathematics, a pseudometric space is a generalization of a metric space in which the distance between two distinct points can be zero. Pseudometric spaces were introduced by Đuro Kurepa in 1934. In the same way as every normed space is a metric space, every seminormed space is a pseudometric space. Because of this analogy the term semimetric space (which has a different meaning in topology) is sometimes used as a synonym, especially in functional analysis. When a topology is generated using a family of pseudometrics, the space is called a gauge space. Definition A pseudometric space (X,d) is a set X together with a non-negative real-valued function d : X \times X \longrightarrow \R_, called a , such that for every x, y, z \in X, #d(x,x) = 0. #''Symmetry'': d(x,y) = d(y,x) #'' Subadditivity''/''Triangle inequality'': d(x,z) \leq d(x,y) + d(y,z) Unlike a metric space, points in a pseudometric space need not be distinguishable; that is, one may have d(x, y) = 0 for distinct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metrizable Space
In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space (X, \mathcal) is said to be metrizable if there is a metric d : X \times X \to , \infty) such that the topology induced by d is \mathcal. Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable. Properties Metrizable spaces inherit all topological properties from metric spaces. For example, they are Hausdorff normal and Tychonoff space">Tychonoff) and First-countable space">first-countable. However, some properties of the metric, such as completeness, cannot be said to be inherited. This is also true of other structures linked to the metric. A metrizable uniform space, for example, may have a different set of Contraction mapping, contraction maps than a metric space to which it is homeomorphic. Metrization theorems One of the first widely recognized metrization theorems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metric Spaces
In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nemytskii Plane
In mathematics, the Moore plane, also sometimes called Niemytzki plane (or Nemytskii plane, Nemytskii's tangent disk topology), is a topological space. It is a completely regular Hausdorff space (also called Tychonoff space) that is not normal. It is named after Robert Lee Moore and Viktor Vladimirovich Nemytskii. Definition If \Gamma is the (closed) upper half-plane \Gamma = \, then a topology may be defined on \Gamma by taking a local basis \mathcal(p,q) as follows: *Elements of the local basis at points (x,y) with y>0 are the open discs in the plane which are small enough to lie within \Gamma. *Elements of the local basis at points p = (x,0) are sets \\cup A where ''A'' is an open disc in the upper half-plane which is tangent to the ''x'' axis at ''p''. That is, the local basis is given by :\mathcal(p,q) = \begin \, & \mbox q > 0; \\ \, & \mbox q = 0. \end Thus the subspace topology inherited by \Gamma\backslash \ is the same as the subspace topology inherited from ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Normal Space
In mathematics, particularly topology, a topological space ''X'' is locally normal if intuitively it looks locally like a normal space. More precisely, a locally normal space satisfies the property that each point of the space belongs to a neighbourhood of the space that is normal under the subspace topology. Formal definition A topological space ''X'' is said to be locally normal if and only if each point, ''x'', of ''X'' has a neighbourhood that is normal under the subspace topology. Note that not every neighbourhood of ''x'' has to be normal, but at least one neighbourhood of ''x'' has to be normal (under the subspace topology). Note however, that if a space were called locally normal if and only if each point of the space belonged to a subset of the space that was normal under the subspace topology, then every topological space would be locally normal. This is because, the singleton is vacuously normal and contains ''x''. Therefore, the definition is more restrictive. E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paracompactness
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff. Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact. Tychonoff's theorem (which states that the product of any collection of compact topological spaces is compact) does not generalize to paracompact spaces in that the product of paracompact spaces need not be paracompa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paracompact Hausdorff Space
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff. Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact. Tychonoff's theorem (which states that the product of any collection of compact topological spaces is compact) does not generalize to paracompact spaces in that the product of paracompact spaces need not be paracompact. H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fully Normal Space
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff. Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact. Tychonoff's theorem (which states that the product of any collection of compact topological spaces is compact) does not generalize to paracompact spaces in that the product of paracompact spaces need not be paracompact. H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]