Path Decomposition
   HOME



picture info

Path Decomposition
In graph theory, a path decomposition of a Graph (discrete mathematics), graph is, informally, a representation of as a "thickened" path graph, and the pathwidth of is a number that measures how much the path was thickened to form . More formally, a path-decomposition is a sequence of subsets of Vertex (graph theory), vertices of such that the endpoints of each edge appear in one of the subsets and such that each vertex appears in a contiguous subsequence of the subsets,. and the pathwidth is one less than the size of the largest set in such a decomposition. Pathwidth is also known as interval thickness (one less than the maximum clique size in an interval graph, interval Glossary of graph theory#Subgraphs, supergraph of ), vertex separation number, or node searching number. Pathwidth and path-decompositions are closely analogous to treewidth and tree decompositions. They play a key role in the theory of graph minors: the families of graphs that are closed under graph min ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') which are connected by ''Glossary of graph theory terms#edge, edges'' (also called ''arcs'', ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a Set (mathematics), set of vertices (also called nodes or points); * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fixed-parameter Tractable
In computer science, parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to ''multiple'' parameters of the input or output. The complexity of a problem is then measured as a function of those parameters. This allows the classification of NP-hard problems on a finer scale than in the classical setting, where the complexity of a problem is only measured as a function of the number of bits in the input. This appears to have been first demonstrated in . The first systematic work on parameterized complexity was done by . Under the assumption that P ≠ NP, there exist many natural problems that require super-polynomial running time when complexity is measured in terms of the input size only but that are computable in a time that is polynomial in the input size and exponential or worse in a parameter . Hence, if is fixed at a small value and the growth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

K-tree
In graph theory, a ''k''-tree is an undirected graph formed by starting with a (''k'' + 1)-vertex complete graph and then repeatedly adding vertices in such a way that each added vertex ''v'' has exactly ''k'' neighbors ''U'' such that, together, the ''k'' + 1 vertices formed by ''v'' and ''U'' form a clique. Characterizations The ''k''-trees are exactly the maximal graphs with a treewidth of ''k'' ("maximal" means that no more edges can be added without increasing their treewidth). They are also exactly the chordal graphs all of whose maximal cliques are the same size ''k'' + 1 and all of whose minimal clique separators are also all the same size ''k''.. Related graph classes 1-trees are the same as trees. 2-trees are maximal series–parallel graphs, and include also the maximal outerplanar graphs. Planar 3-trees are also known as Apollonian networks. The graphs that have treewidth at most ''k'' are exactly the subgraphs of ''k''-trees, and f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maximal Element
In mathematics, especially in order theory, a maximal element of a subset S of some preordered set is an element of S that is not smaller than any other element in S. A minimal element of a subset S of some preordered set is defined dually as an element of S that is not greater than any other element in S. The notions of maximal and minimal elements are weaker than those of greatest element and least element which are also known, respectively, as maximum and minimum. The maximum of a subset S of a preordered set is an element of S which is greater than or equal to any other element of S, and the minimum of S is again defined dually. In the particular case of a partially ordered set, while there can be at most one maximum and at most one minimum there may be multiple maximal or minimal elements. Specializing further to totally ordered sets, the notions of maximal element and maximum coincide, and the notions of minimal element and minimum coincide. As an example, in the collecti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Caterpillar Tree
In graph theory, a caterpillar or caterpillar tree is a tree (graph theory), tree in which all the Vertex (graph theory), vertices are within distance 1 of a central Path graph, path. Caterpillars were first studied in a series of papers by Harary and Schwenk. The name was suggested by Arthur Hobbs (mathematician), Arthur Hobbs. As colorfully write, "A caterpillar is a tree which metamorphoses into a path when its cocoon of endpoints is removed.". Equivalent characterizations The following characterizations all describe the caterpillar trees: *They are the trees for which removing the leaves and incident edges produces a path graph. *They are the trees in which there exists a path that contains every vertex of degree two or more. *They are the trees in which every vertex of degree at least three has at most two non-leaf neighbors. *They are the trees that do not contain as a subgraph the graph formed by replacing every edge in the star graph ''K''1,3 by a path of length two. *T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pursuit–evasion
Pursuit–evasion (variants of which are referred to as cops and robbers and graph searching) is a family of problems in mathematics and computer science in which one group attempts to track down members of another group in an environment. Early work on problems of this type modeled the environment geometrically. In 1976, Torrence Parsons introduced a formulation whereby movement is constrained by a graph. The geometric formulation is sometimes called continuous pursuit–evasion, and the graph formulation discrete pursuit–evasion (also called graph searching). Current research is typically limited to one of these two formulations. Discrete formulation In the discrete formulation of the pursuit–evasion problem, the environment is modeled as a graph. Problem definition There are innumerable possible variants of pursuit–evasion, though they tend to share many elements. A typical, basic example is as follows (cops and robber games): Pursuers and evaders occupy nodes of a gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Order
In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive). # If a \leq b and b \leq c then a \leq c ( transitive). # If a \leq b and b \leq a then a = b ( antisymmetric). # a \leq b or b \leq a ( strongly connected, formerly called totality). Requirements 1. to 3. just make up the definition of a partial order. Reflexivity (1.) already follows from strong connectedness (4.), but is required explicitly by many authors nevertheless, to indicate the kinship to partial orders. Total orders are sometimes also called simple, connex, or full orders. A set equipped with a total order is a totally ordered set; the terms simply ordered set, linearly ordered set, toset and loset are also used. The term ''chain'' is sometimes defined as a synonym of ''totally ordered set'', but generally refers to a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maximal Clique
In graph theory, a clique ( or ) is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph G is an induced subgraph of G that is complete. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs. Cliques have also been studied in computer science: the task of finding whether there is a clique of a given size in a graph (the clique problem) is NP-complete, but despite this hardness result, many algorithms for finding cliques have been studied. Although the study of complete subgraphs goes back at least to the graph-theoretic reformulation of Ramsey theory by , the term ''clique'' comes from , who used complete subgraphs in social networks to model cliques of people; that is, groups of people all of whom know each other. Cliques have many other applications in the sciences and particularly in bioinformatics. Definitions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Intersection Graph
In graph theory, an intersection graph is a graph that represents the pattern of intersections of a family of sets. Any graph can be represented as an intersection graph, but some important special classes of graphs can be defined by the types of sets that are used to form an intersection representation of them. Formal definition Formally, an intersection graph is an undirected graph formed from a family of sets : S_i, \,\,\, i = 0, 1, 2, \dots by creating one vertex for each set , and connecting two vertices and by an edge whenever the corresponding two sets have a nonempty intersection, that is, : E(G) = \. All graphs are intersection graphs Any undirected graph may be represented as an intersection graph. For each vertex of , form a set consisting of the edges incident to ; then two such sets have a nonempty intersection if and only if the corresponding vertices share an edge. Therefore, is the intersection graph of the sets . provide a construction that is more ef ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Interval Graph
In graph theory, an interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect. It is the intersection graph of the intervals. Interval graphs are chordal graphs and perfect graphs. They can be recognized in linear time, and an optimal graph coloring or maximum clique in these graphs can be found in linear time. The interval graphs include all proper interval graphs, graphs defined in the same way from a set of unit intervals. These graphs have been used to model food webs, and to study scheduling problems in which one must select a subset of tasks to be performed at non-overlapping times. Other applications include assembling contiguous subsequences in DNA mapping, and temporal reasoning. Definition An interval graph is an undirected graph formed from a family of intervals :S_i,\quad i=0,1,2,\dots by creating one vertex for each interval , and connecting two v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Induced Subgraph
In graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges, from the original graph, connecting pairs of vertices in that subset. Definition Formally, let G=(V,E) be any graph, and let S\subseteq V be any subset of vertices of . Then the induced subgraph G is the graph whose vertex set is S and whose edge set consists of all of the edges in E that have both endpoints in S . That is, for any two vertices u,v\in S , u and v are adjacent in G if and only if they are adjacent in G . The same definition works for undirected graphs, directed graphs, and even multigraphs. The induced subgraph G may also be called the subgraph induced in G by S , or (if context makes the choice of G unambiguous) the induced subgraph of S . Examples Important types of induced subgraphs include the following. * Induced paths are induced subgraphs that are paths. The shortest path between any two vertices in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]