Parity Problem (sieve Theory)
   HOME





Parity Problem (sieve Theory)
In number theory, the parity problem refers to a limitation in sieve theory that prevents sieves from giving good estimates in many kinds of prime-counting problems. The problem was identified and named by Atle Selberg in 1949. Beginning around 1996, John Friedlander and Henryk Iwaniec developed some parity-sensitive sieves that make the parity problem less of an obstacle. Statement Terence Tao gave this "rough" statement of the problem: This problem is significant because it may explain why it is difficult for sieves to "detect primes," in other words to give a non-trivial lower bound for the number of primes with some property. For example, in a sense Chen's theorem is very close to a solution of the twin prime conjecture, since it says that there are infinitely many primes ''p'' such that ''p'' + 2 is either prime or the product of two primes (semiprime). The parity problem suggests that, because the case of interest has an odd number of prime factors (namely 1), it won't be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Selberg Sieve
In number theory, the Selberg sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Atle Selberg in the 1940s. Description In terms of sieve theory the Selberg sieve is of ''combinatorial type'': that is, derives from a careful use of the inclusion–exclusion principle. Selberg replaced the values of the Möbius function which arise in this by a system of weights which are then optimised to fit the given problem. The result gives an ''upper bound'' for the size of the sifted set. Let A be a set of positive integers \le x and let P be a set of primes. Let A_d denote the set of elements of A divisible by d when d is a product of distinct primes from P. Further let A_1 denote A itself. Let z be a positive real number and P(z) denote the product of the primes in P which are \le z. The object of the sieve is to estimate :S(A,P,z) = \left\vert A \setminus \big ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinality
The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thumb is ''pollex'' (compare ''hallux'' for big toe), and the corresponding adjective for thumb is ''pollical''. Definition Thumb and fingers The English word ''finger'' has two senses, even in the context of appendages of a single typical human hand: 1) Any of the five terminal members of the hand. 2) Any of the four terminal members of the hand, other than the thumb. Linguistically, it appears that the original sense was the first of these two: (also rendered as ) was, in the inferred Proto-Indo-European language, a suffixed form of (or ), which has given rise to many Indo-European-family words (tens of them defined in English dictionaries) that involve, or stem from, concepts of fiveness. The thumb shares the following with each of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primes In Arithmetic Progression
In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a_n = 3 + 4n for 0 \le n \le 2. According to the Green–Tao theorem, there exist arbitrarily long arithmetic progressions in the sequence of primes. Sometimes the phrase may also be used about primes which belong to an arithmetic progression which also contains composite numbers. For example, it can be used about primes in an arithmetic progression of the form an + b, where ''a'' and ''b'' are coprime which according to Dirichlet's theorem on arithmetic progressions contains infinitely many primes, along with infinitely many composites. For any integer k\geq 3, an AP-''k'' (also called PAP-''k'') is any sequence of k primes in arithmetic progression. An AP-k can be written as k primes of the form an+b, for fixed integers a (called the common difference) and b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anatolii Alexeevitch Karatsuba
Anatoly Alexeyevich Karatsuba (his first name often spelled Anatolii) (; Grozny, Soviet Union, 31 January 1937 – Moscow, Russia, 28 September 2008) was a Russian mathematician working in the field of analytic number theory, ''p''-adic numbers and Dirichlet series. For most of his student and professional life he was associated with the Faculty of Mechanics and Mathematics of Moscow State University, defending a D.Sc. there entitled "The method of trigonometric sums and intermediate value theorems" in 1966. He later held a position at the Steklov Institute of Mathematics of the Academy of Sciences. His textbook ''Foundations of Analytic Number Theory'' went to two editions, 1975 and 1983. The Karatsuba algorithm is the earliest known divide and conquer algorithm for multiplication and lives on as a special case of its direct generalization, the Toom–Cook algorithm. The main research works of Anatoly Karatsuba were published in more than 160 research papers and monographs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Glyn Harman
Glyn Harman (born 2 November 1956) is a British mathematician working in analytic number theory. One of his major interests is prime number theory. He is best known for results on gaps between primes and the greatest prime factor of ''p'' + ''a'', as well as his lower bound for the number of Carmichael numbers up to X. His monograph ''Prime-detecting Sieves'' (2007) was published by Princeton University Press. He has also written a book ''Metric Number Theory'' (1998). As well, he has contributed to the field of Diophantine approximation. Harman also proved that there are infinitely many primes (additive primes) whose sum of digits is prime. (the sequencA046704in the OEIS).The OEIadditive primes/ref> Harman retired at the end of 2013 from being a professor at Royal Holloway, University of London. Previously he was a professor at Cardiff University. Harman is married, and has three sons, and used to live in Wokingham, Berkshire before moving to Harrow, Middlesex/Greater London a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Friedlander–Iwaniec Theorem
In analytic number theory the Friedlander–Iwaniec theorem states that there are infinitely many prime numbers of the form a^2 + b^4. The first few such primes are :2, 5, 17, 37, 41, 97, 101, 137, 181, 197, 241, 257, 277, 281, 337, 401, 457, 577, 617, 641, 661, 677, 757, 769, 821, 857, 881, 977, … . The difficulty in this statement lies in the very sparse nature of this sequence: the number of integers of the form a^2+b^4 less than X is roughly of the order X^. History The theorem was proved in 1997 by John Friedlander and Henryk Iwaniec. Iwaniec was awarded the 2001 Ostrowski Prize in part for his contributions to this work. Refinements The theorem was refined by D.R. Heath-Brown and Xiannan Li in 2017. In particular, they proved that the polynomial a^2 + b^4 represents infinitely many primes when the variable b is also required to be prime. Namely, if f(n) is the prime numbers less than n in the form a^2 + b^4, then f(n) \sim v \frac where v=2 \sqrt \frac \prod_ \fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number Theorem
In mathematics, the prime number theorem (PNT) describes the asymptotic analysis, asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann (in particular, the Riemann zeta function). The first such distribution found is , where is the prime-counting function (the number of primes less than or equal to ''N'') and is the natural logarithm of . This means that for large enough , the probability that a random integer not greater than is prime is very close to . Consequently, a random integer with at most digits (for large enough ) is about half as likely to be prime as a random integer with at most digits. For example, among the positive integers of at most 1000 digits, about on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Brun Sieve
In the field of number theory, the Brun sieve (also called Brun's pure sieve) is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Viggo Brun in 1915 and later generalized to the fundamental lemma of sieve theory by others. Description In terms of sieve theory the Brun sieve is of ''combinatorial type''; that is, it derives from a careful use of the inclusion–exclusion principle. Let A be a finite set of positive integers. Let P be some set of prime numbers. For each prime p in P, let A_p denote the set of elements of A that are divisible by p. This notation can be extended to other integers d that are products of distinct primes in P. In this case, define A_d to be the intersection of the sets A_p for the prime factors p of d. Finally, define A_1 to be A itself. Let z be an arbitrary positive real number. The object of the sieve is to estimate: S(A,P,z) = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sieve Theory
Sieve theory is a set of general techniques in number theory, designed to count, or more realistically to estimate the size of, sifted sets of integers. The prototypical example of a sifted set is the set of prime numbers up to some prescribed limit ''X''. Correspondingly, the prototypical example of a sieve is the sieve of Eratosthenes, or the more general Legendre sieve. The direct attack on prime numbers using these methods soon reaches apparently insuperable obstacles, in the way of the accumulation of error terms. In one of the major strands of number theory in the twentieth century, ways were found of avoiding some of the difficulties of a frontal attack with a naive idea of what sieving should be. One successful approach is to approximate a specific sifted set of numbers (e.g. the set of prime numbers) by another, simpler set (e.g. the set of almost prime numbers), which is typically somewhat larger than the original set, and easier to analyze. More sophisticated sieves a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]