Parasitic Extraction
   HOME
*





Parasitic Extraction
In electronic design automation, parasitic extraction is the calculation of the parasitic effects in both the designed devices and the required wiring interconnects (integrated circuits), interconnects of an electronic circuit: parasitic capacitances, parasitic resistances and parasitic inductances, commonly called parasitic devices, parasitic components, or simply parasitics. The major purpose of parasitic extraction is to create an accurate analog model of the circuit, so that detailed simulations can emulate actual digital and analog circuit responses. Digital circuit responses are often used to populate databases for signal delay and loading calculation such as: timing analysis; Power optimization (EDA), power analysis; circuit simulation; and signal integrity analysis. Analog circuits are often run in detailed test benches to indicate if the extra extracted parasitics will still allow the designed circuit to function. Background In early integrated circuits the impact of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electronic Design Automation
Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), is a category of software tools for designing Electronics, electronic systems such as integrated circuits and printed circuit boards. The tools work together in a Design flow (EDA), design flow that chip designers use to design and analyze entire semiconductor chips. Since a modern semiconductor chip can have billions of components, EDA tools are essential for their design; this article in particular describes EDA specifically with respect to integrated circuits (ICs). History Early days Prior to the development of EDA, integrated circuits were designed by hand and manually laid out. Some advanced shops used geometric software to generate tapes for a Gerber format, Gerber photoplotter, responsible for generating a monochromatic exposure image, but even those copied digital recordings of mechanically drawn components. The process was fundamentally graphic, with the translation f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Delay And Phase Delay
In signal processing, group delay and phase delay are delay times experienced by a signal's various frequency components when the signal passes through a system that is linear time-invariant (LTI), such as a microphone, coaxial cable, amplifier, loudspeaker, telecommunications system or ethernet cable. These delays are generally frequency dependent. This means that different frequency components experience different delays, which cause distortion of the signal's waveform as it passes through the system. This distortion can cause problems such as poor fidelity in analog video and analog audio, or a high bit-error rate in a digital bit stream. For a modulation signal (passband signal), the information carried by the signal is carried exclusively in the wave envelope. Group delay therefore operates only with the frequency components derived from the envelope. Introduction The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mentor Graphics
Siemens EDA is a US-based electronic design automation (EDA) multinational corporation for electrical engineering and electronics, headquartered in Wilsonville, Oregon. Founded in 1981 as Mentor Graphics, the company was acquired by Siemens in 2017. The company distributes products that assist in electronic design automation, simulation tools for analog mixed-signal design, VPN solutions, and fluid dynamics and heat transfer tools. The company leveraged Apollo Computer workstations to differentiate itself within the computer-aided engineering (CAE) market with its software and hardware. History Siemens EDA was founded as Mentor Graphics in 1981 by Tom Bruggere, Gerry Langeler, and Dave Moffenbeier, all formerly of Tektronix. The company raised $55 million in funding through an initial public offering in 1984. Mentor initially wrote software that ran only in Apollo workstations. When Mentor entered the CAE market the company had two technical differentiators: the first ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cadence Design Systems
Cadence Design Systems, Inc. (stylized as cādence), headquartered in San Jose, California, is an American multinational corporation, multinational computational software company, founded in 1988 by the merger of SDA Systems and ECAD, Inc. The company produces software, Electronic hardware, hardware and silicon structures for designing integrated circuits, System on chip, systems on chips (SoCs) and printed circuit boards. History Origins Cadence Design Systems began as an Electronic design automation, electronic design automation (EDA) company, formed by the 1988 merger of Solomon Design Automation (SDA), co-founded in 1983 by A. Richard Newton, Richard Newton, Alberto Sangiovanni-Vincentelli and James Solomon, and ECAD, Inc., ECAD, a public company co-founded by Ping Chao, Glen Antle and Paul Huang in 1982. SDA's CEO Joseph Costello (software executive), Joseph Costello was appointed as CEO of the newly combined company. Executive leadership Following the resignation of Cadenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Avanti Corporation
Synopsys is an American electronic design automation (EDA) company that focuses on silicon design and verification, silicon intellectual property and software security and quality. Products include tools for logic synthesis and physical design of integrated circuits, simulators for development and debugging environments that assist in the design of the logic for chips and computer systems. In recent years, Synopsys has expanded its products and services to include application security testing. Synopsys has gained attention due to its relationship with various Chinese state entities. In 2018, Synopsys formed a partnership with the People's Liberation Army National Defence University and, in 2022, the company came under investigation by the United States Department of Justice for technology transfers to sanctioned entities in China. History Synopsys was founded by Aart J de Geus and David Gregory in 1986 in Research Triangle Park, North Carolina. The company was initially est ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Synopsys
Synopsys is an American electronic design automation (EDA) company that focuses on silicon design and verification, silicon intellectual property and software security and quality. Products include tools for logic synthesis and physical design of integrated circuits, simulators for development and debugging environments that assist in the design of the logic for chips and computer systems. In recent years, Synopsys has expanded its products and services to include application security testing. Synopsys has gained attention due to its relationship with various Chinese state entities. In 2018, Synopsys formed a partnership with the People's Liberation Army National Defence University and, in 2022, the company came under investigation by the United States Department of Justice for technology transfers to sanctioned entities in China. History Synopsys was founded by Aart J de Geus and David Gregory in 1986 in Research Triangle Park, North Carolina. The company was initially est ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fast Multipole Method
__NOTOC__ The fast multipole method (FMM) is a numerical technique that was developed to speed up the calculation of long-ranged forces in the ''n''-body problem. It does this by expanding the system Green's function using a multipole expansion, which allows one to group sources that lie close together and treat them as if they are a single source. The FMM has also been applied in accelerating the iterative solver in the method of moments (MOM) as applied to computational electromagnetics problems. The FMM was first introduced in this manner by Leslie Greengard and Vladimir Rokhlin Jr. and is based on the multipole expansion of the vector Helmholtz equation. By treating the interactions between far-away basis functions using the FMM, the corresponding matrix elements do not need to be explicitly stored, resulting in a significant reduction in required memory. If the FMM is then applied in a hierarchical manner, it can improve the complexity of matrix-vector products in an ite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maxwell's Equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields.''Electric'' and ''magnetic'' fields, according to the theory of relativity, are the components of a single electromagnetic field. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Solver
Electromagnetic field solvers (or sometimes just field solvers) are specialized programs that solve (a subset of) Maxwell's equations directly. They form a part of the field of electronic design automation, or EDA, and are commonly used in the design of integrated circuits and printed circuit boards. They are used when a solution from first principles is needed, or the highest accuracy is required. Introduction The extraction of parasitic circuit models is important for various aspects of physical verification such as timing, signal integrity, substrate coupling, and power grid analysis. As circuit speeds and densities have increased, the need has grown to account accurately for parasitic effects for larger and more complicated interconnect structures. In addition, the electromagnetic complexity has grown as well, from resistance and capacitance, to inductance, and now even full electromagnetic wave propagation. This increase in complexity has also grown for the analysis of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Layout Versus Schematic
The Layout Versus Schematic (LVS) is the class of electronic design automation (EDA) verification software that determines whether a particular integrated circuit layout corresponds to the original schematic or circuit diagram of the design. Background A successful design rule check (DRC) ensures that the layout conforms to the rules designed/required for faultless fabrication. However, it does not guarantee if it really represents the circuit you desire to fabricate. This is where an LVS check is used. The need for such programs was recognized relatively early in the history of ICs, and programs to perform this comparison were written as early as 1975. These early programs operated mainly on the level of graph isomorphism, checking whether the schematic and layout were indeed identical. With the advent of digital logic, this was too restrictive, since exactly the same function can be implemented in many different (and non-isomorphic) ways. Therefore, LVS has been augmented by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Power Network Design (IC)
In the design of integrated circuits, power network design is the analysis and design of on-chip conductor networks that distribute electrical power on a chip. As in all engineering, this involves tradeoffs - the network must have adequate performance, be sufficiently reliable, but should not use more resources than required. Function The power distribution network distributes power and ground voltages from pad locations to all devices in a design. Shrinking device dimensions, faster switching frequencies and increasing power consumption in deep sub-micrometer technologies cause large switching currents to flow in the power and ground networks which degrade performance and reliability. A robust power distribution network is essential to ensure reliable operation of circuits on a chip. Power supply integrity verification is a critical concern in high-performance designs. Design considerations Due to the resistance of the interconnects constituting the network, there is a vol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]