HOME
*



picture info

Precision And Recall
In pattern recognition, information retrieval, object detection and classification (machine learning), precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space. Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances, while recall (also known as sensitivity) is the fraction of relevant instances that were retrieved. Both precision and recall are therefore based on relevance. Consider a computer program for recognizing dogs (the relevant element) in a digital photograph. Upon processing a picture which contains ten cats and twelve dogs, the program identifies eight dogs. Of the eight elements identified as dogs, only five actually are dogs (true positives), while the other three are cats (false positives). Seven dogs were missed (false negatives), and seven cats were correctly excluded (true negatives). The program's precision is then 5/8 (true positives / se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Positive Predictive Value
The positive and negative predictive values (PPV and NPV respectively) are the proportions of positive and negative results in statistics and diagnostic tests that are true positive and true negative results, respectively. The PPV and NPV describe the performance of a diagnostic test or other statistical measure. A high result can be interpreted as indicating the accuracy of such a statistic. The PPV and NPV are not intrinsic to the test (as true positive rate and true negative rate are); they depend also on the prevalence. Both PPV and NPV can be derived using Bayes' theorem. Although sometimes used synonymously, a ''positive predictive value'' generally refers to what is established by control groups, while a post-test probability refers to a probability for an individual. Still, if the individual's pre-test probability of the target condition is the same as the prevalence in the control group used to establish the positive predictive value, the two are numerically equal. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

F-measure
In statistical analysis of binary classification, the F-score or F-measure is a measure of a test's accuracy. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all positive results, including those not identified correctly, and the recall is the number of true positive results divided by the number of all samples that should have been identified as positive. Precision is also known as positive predictive value, and recall is also known as sensitivity in diagnostic binary classification. The F1 score is the harmonic mean of the precision and recall. The more generic F_\beta score applies additional weights, valuing one of precision or recall more than the other. The highest possible value of an F-score is 1.0, indicating perfect precision and recall, and the lowest possible value is 0, if either precision or recall are zero. Etymology The name F-measure is believed to be named after ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


F1 Score
In statistical analysis of binary classification, the F-score or F-measure is a measure of a test's accuracy. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all positive results, including those not identified correctly, and the recall is the number of true positive results divided by the number of all samples that should have been identified as positive. Precision is also known as positive predictive value, and recall is also known as sensitivity in diagnostic binary classification. The F1 score is the harmonic mean of the precision and recall. The more generic F_\beta score applies additional weights, valuing one of precision or recall more than the other. The highest possible value of an F-score is 1.0, indicating perfect precision and recall, and the lowest possible value is 0, if either precision or recall are zero. Etymology The name F-measure is believed to be named after ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Evaluation Measures (information Retrieval)
Evaluation measures for an information retrieval (IR) system assess how well an index, search engine or database returns results from a collection of resources that satisfy a user's query. They are therefore fundamental to the success of information systems and digital platforms. The success of an IR system may be judged by a range of criteria including relevance, speed, user satisfaction, usability, efficiency and reliability. However the most important factor in determining a systems effectiveness for users is the overall relevance of results retrieved in response to a query. Evaluation measures may be categorised in various ways including offline or online, user-based or system-based and include methods such as observed user behaviour, test collections, precision and recall, and scores from prepared benchmark test sets. Evaluation for an information retrieval system should also include a validation of the measures used, i.e. an assessment of how well they measure what they are i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Relevance
Relevance is the concept of one topic being connected to another topic in a way that makes it useful to consider the second topic when considering the first. The concept of relevance is studied in many different fields, including cognitive sciences, logic, and library and information science. Most fundamentally, however, it is studied in epistemology (the theory of knowledge). Different theories of knowledge have different implications for what is considered relevant and these fundamental views have implications for all other fields as well. Definition "Something (A) is relevant to a task (T) if it increases the likelihood of accomplishing the goal (G), which is implied by T." (Hjørland & Sejer Christensen, 2002). A thing might be relevant, a document or a piece of information may be relevant. The basic understanding of relevance does not depend on whether we speak of "things" or "information". For example, the Gandhian principles are of great relevance in today's world. Ep ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Web Search Engine
A search engine is a software system designed to carry out web searches. They search the World Wide Web in a systematic way for particular information specified in a textual web search query. The search results are generally presented in a line of results, often referred to as search engine results pages (SERPs). When a user enters a query into a search engine, the engine scans its index of web pages to find those that are relevant to the user's query. The results are then ranked by relevancy and displayed to the user. The information may be a mix of links to web pages, images, videos, infographics, articles, research papers, and other types of files. Some search engines also mine data available in databases or open directories. Unlike web directories and social bookmarking sites, which are maintained by human editors, search engines also maintain real-time information by running an algorithm on a web crawler. Any internet-based content that can't be indexed and searched ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cohen's Kappa
Cohen's kappa coefficient (''κ'', lowercase Greek kappa) is a statistic that is used to measure inter-rater reliability (and also intra-rater reliability) for qualitative (categorical) items. It is generally thought to be a more robust measure than simple percent agreement calculation, as ''κ'' takes into account the possibility of the agreement occurring by chance. There is controversy surrounding Cohen's kappa due to the difficulty in interpreting indices of agreement. Some researchers have suggested that it is conceptually simpler to evaluate disagreement between items. History The first mention of a kappa-like statistic is attributed to Galton in 1892. The seminal paper introducing kappa as a new technique was published by Jacob Cohen in the journal ''Educational and Psychological Measurement'' in 1960. Definition Cohen's kappa measures the agreement between two raters who each classify ''N'' items into ''C'' mutually exclusive categories. The definition of \kappa is :\k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Receiver Operating Characteristic
A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied. The method was originally developed for operators of military radar receivers starting in 1941, which led to its name. The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings. The true-positive rate is also known as sensitivity, recall or ''probability of detection''. The false-positive rate is also known as ''probability of false alarm'' and can be calculated as (1 − specificity). The ROC can also be thought of as a plot of the power as a function of the Type I Error of the decision rule (when the performance is calculated from just a sample of the population, it can be thought of as estimators of these quantities). The ROC curve is thus the sensitivity or recall as a function of fall-out. In general, if the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Accuracy (binary Classification)
Accuracy and precision are two measures of ''observational error''. ''Accuracy'' is how close a given set of measurements (observations or readings) are to their ''true value'', while ''precision'' is how close the measurements are to each other. In other words, ''precision'' is a description of ''random errors'', a measure of statistical variability. ''Accuracy'' has two definitions: # More commonly, it is a description of only '' systematic errors'', a measure of statistical bias of a given measure of central tendency; low accuracy causes a difference between a result and a true value; ISO calls this ''trueness''. # Alternatively, ISO defines accuracy as describing a combination of both types of observational error (random and systematic), so high accuracy requires both high precision and high trueness. In the first, more common definition of "accuracy" above, the concept is independent of "precision", so a particular set of data can be said to be accurate, precise, both, or ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Markedness
In linguistics and social sciences, markedness is the state of standing out as nontypical or divergent as opposed to regular or common. In a marked–unmarked relation, one term of an opposition is the broader, dominant one. The dominant default or minimum-effort form is known as ''unmarked''; the other, secondary one is ''marked''. In other words, markedness involves the characterization of a "normal" linguistic unit against one or more of its possible "irregular" forms. In linguistics, markedness can apply to, among others, Phonology, phonological, Grammar, grammatical, and Semantics, semantic oppositions, defining them in terms of marked and unmarked oppositions, such as ''honest'' (unmarked) vs. ''dishonest'' (marked). Marking may be purely semantic, or may be realized as extra morphology. The term derives from the marking of a grammatical role with a suffix or another element, and has been extended to situations where there is no morphological distinction. In social scien ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Informedness
Youden's J statistic (also called Youden's index) is a single statistic that captures the performance of a dichotomous diagnostic test. Informedness is its generalization to the multiclass case and estimates the probability of an informed decision. Definition Youden's ''J'' statistic is : J = \text + \text -1 with the two right-hand quantities being sensitivity and specificity. Thus the expanded formula is: : J = \frac+\frac-1 The index was suggested by W.J. Youden in 1950 as a way of summarising the performance of a diagnostic test, however the formula was earlier published in Science by C.S.Pierce in 1884. Its value ranges from -1 through 1 (inclusive), and has a zero value when a diagnostic test gives the same proportion of positive results for groups with and without the disease, i.e the test is useless. A value of 1 indicates that there are no false positives or false negatives, i.e. the test is perfect. The index gives equal weight to false positive and false negative ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]