Polynomial Map
In algebra, a polynomial map or polynomial mapping P: V \to W between vector spaces over an infinite field ''k'' is a polynomial in linear functionals with coefficients in ''k''; i.e., it can be written as :P(v) = \sum_ \lambda_(v) \cdots \lambda_(v) w_ where the \lambda_: V \to k are linear functionals and the w_ are vectors in ''W''. For example, if W = k^m, then a polynomial mapping can be expressed as P(v) = (P_1(v), \dots, P_m(v)) where the P_i are (scalar-valued) polynomial functions on ''V''. (The abstract definition has an advantage that the map is manifestly free of a choice of basis.) When ''V'', ''W'' are finite-dimensional vector spaces and are viewed as algebraic varieties, then a polynomial mapping is precisely a morphism of algebraic varieties. One fundamental outstanding question regarding polynomial mappings is the Jacobian conjecture, which concerns the sufficiency of a polynomial mapping to be invertible. See also *Polynomial functor References *Claudio Pro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish this area of study from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures. Universal algebra is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called the ''variety of groups''. History Before the nineteenth century, algebra meant ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear eq ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' join ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Functional
In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field of scalars (often, the real numbers or the complex numbers). If is a vector space over a field , the set of all linear functionals from to is itself a vector space over with addition and scalar multiplication defined pointwise. This space is called the dual space of , or sometimes the algebraic dual space, when a topological dual space is also considered. It is often denoted , p. 19, §3.1 or, when the field is understood, V^*; other notations are also used, such as V', V^ or V^. When vectors are represented by column vectors (as is common when a basis is fixed), then linear functionals are represented as row vectors, and their values on specific vectors are given by matrix products (with the row vector on the left). Examples * The constant zero function, mapping every vector to zero, is trivially a linear functional. * Indexing int ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial Function
In mathematics, a polynomial is an expression (mathematics), expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic variety ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dimension (vector Space)
In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension. For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say V is if the dimension of V is finite, and if its dimension is infinite. The dimension of the vector space V over the field F can be written as \dim_F(V) or as : F read "dimension of V over F". When F can be inferred from context, \dim(V) is typically written. Examples The vector space \R^3 has \left\ as a standard basis, and therefore \dim_(\R^3) = 3. More generally, \dim_(\R^n) = n, and even more generally, \dim_(F^n) = n for any field F. The complex numbers \Complex are both a real and complex vector space; we have ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Varieties
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be irreducible, which means that it is not the union of two smaller sets that are closed in the Zariski topology. Under this definition, non-irreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility. The fundamental theorem of algebra establishes a link between algebra and geometry by showing that a monic polynomial (an algebraic object) in one variable with complex number coefficients is determined ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Morphism Of Algebraic Varieties
In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and they are isomorphisms in the category of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective variety, projective varieties – the weaker condition of a rational map and birational maps are frequently used as well. Definition If ''X'' and ''Y'' are closed subvarieties of \mathbb^n and \mathbb^m (so they are affine varieties), then a regular map f\colon X\to Y is the restriction of a polynomial map \mathbb^n\to \mathbb^m. Explicitly, it has the form: :f = (f_1, \dots, f_m) where the f_is are in the coordinate ring of ''X'': :k[X] = k[x_1, \dots, x_n]/I, where ''I'' is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobian Conjecture
In mathematics, the Jacobian conjecture is a famous unsolved problem concerning polynomials in several variables. It states that if a polynomial function from an ''n''-dimensional space to itself has Jacobian determinant which is a non-zero constant, then the function has a polynomial inverse. It was first conjectured in 1939 by Ott-Heinrich Keller, and widely publicized by Shreeram Abhyankar, as an example of a difficult question in algebraic geometry that can be understood using little beyond a knowledge of calculus. The Jacobian conjecture is notorious for the large number of attempted proofs that turned out to contain subtle errors. As of 2018, there are no plausible claims to have proved it. Even the two-variable case has resisted all efforts. There are currently no known compelling reasons for believing the conjecture to be true, and according to van den Essen there are some suspicions that the conjecture is in fact false for large numbers of variables (indeed, there is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial Functor
In algebra, a polynomial functor is an endofunctor on the category \mathcal of finite-dimensional vector spaces that depends polynomially on vector spaces. For example, the symmetric powers V \mapsto \operatorname^n(V) and the exterior powers V \mapsto \wedge^n(V) are polynomial functors from \mathcal to \mathcal; these two are also Schur functors. The notion appears in representation theory as well as category theory (the calculus of functors). In particular, the category of homogeneous polynomial functors of degree ''n'' is equivalent to the category of finite-dimensional representations of the symmetric group S_n over a field of characteristic zero. Definition Let ''k'' be a field of characteristic zero and \mathcal the category of finite-dimensional ''k''-vector spaces and ''k''-linear maps. Then an endofunctor F\colon \mathcal \to \mathcal is a ''polynomial functor'' if the following equivalent conditions hold: *For every pair of vector spaces ''X'', ''Y'' in \mathcal, th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Claudio Procesi
Claudio Procesi (born 31 March 1941 in Rome) is an Italian mathematician, known for works in algebra and representation theory. Career Procesi studied at the Sapienza University of Rome, where he received his degree (Laurea) in 1963. In 1966 he graduated from the University of Chicago advised by Israel Herstein, with a thesis titled "On rings with polynomial identities". From 1966 he was assistant professor at the University of Rome, 1970 associate professor at the University of Lecce, and 1971 at the University of Pisa. From 1973 he was full professor in Pisa and in 1975 ordinary Professor at the Sapienza University of Rome. He was a visiting scientist at Columbia University (1969–1970), the University of California, Los Angeles (1973/74), at the Instituto Nacional de Matemática Pura e Aplicada, at the Massachusetts Institute of Technology (1991), at the University of Grenoble, at Brandeis University (1981/2), at the University of Texas at Austin (1984), the Institute for Ad ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |