HOME



picture info

Partition Matroid
In mathematics, a partition matroid or partitional matroid is a matroid that is a direct sum of uniform matroids. It is defined over a base set in which the elements are partitioned into different categories. For each category, there is a ''capacity constraint'' - a maximum number of allowed elements from this category. The independent sets of a partition matroid are exactly the sets in which, for each category, the number of elements from this category is at most the category capacity. Formal definition Let C_i be a collection of disjoint sets ("categories"). Let d_i be integers with 0\le d_i\le , C_i, ("capacities"). Define a subset I\subseteq \bigcup_i C_i to be "independent" when, for every index i, , I\cap C_i, \le d_i. The sets satisfying this condition form the independent sets of a matroid, called a partition matroid. The sets C_i are called the categories or the blocks of the partition matroid. A basis of the partition matroid is a set whose intersection with every ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bipartite Graph
In the mathematics, mathematical field of graph theory, a bipartite graph (or bigraph) is a Graph (discrete mathematics), graph whose vertex (graph theory), vertices can be divided into two disjoint sets, disjoint and Independent set (graph theory), independent sets U and V, that is, every edge (graph theory), edge connects a Vertex (graph theory), vertex in U to one in V. Vertex sets U and V are usually called the ''parts'' of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycle (graph theory), cycles. The two sets U and V may be thought of as a graph coloring, coloring of the graph with two colors: if one colors all nodes in U blue, and all nodes in V red, each edge has endpoints of differing colors, as is required in the graph coloring problem.. In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a Gallery of named graphs, triangle: after one node is colored blue and another red, the third vertex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Exponential Generating Function
In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series. There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series. Every sequence in principle has a generating function of each type (except that Lambert and Dirichlet series require indices to start at 1 rather than 0), but the ease with which they can be handled may differ considerably. The particular generating function, if any, that is most useful in a given context will depend upon the nature of the sequence and the details of the problem being addressed. Generating functions are sometimes called generating series, in that a series of terms can be said to be the generator of its sequence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matroid Intersection
In combinatorial optimization, the matroid intersection problem is to find a largest common independent set in two matroids over the same ground set. If the elements of the matroid are assigned real weights, the weighted matroid intersection problem is to find a common independent set with the maximum possible weight. These problems generalize many problems in combinatorial optimization including finding maximum matchings and maximum weight matchings in bipartite graphs and finding arborescences in directed graphs. The matroid intersection theorem, due to Jack Edmonds,. Reprinted in M. Jünger et al. (Eds.): Combinatorial Optimization (Edmonds Festschrift), LNCS 2570, pp. 1126, Springer-Verlag, 2003. says that there is always a simple upper bound certificate, consisting of a partitioning of the ground set amongst the two matroids, whose value (sum of respective ranks) equals the size of a maximum common independent set. In other words, for any two matroids M_1 = (E, \mathcal I_1) a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complete Multipartite Graph
In graph theory, a part of mathematics, a -partite graph is a graph whose vertices are (or can be) partitioned into different independent sets. Equivalently, it is a graph that can be colored with colors, so that no two endpoints of an edge have the same color. When these are the bipartite graphs, and when they are called the tripartite graphs. Bipartite graphs may be recognized in polynomial time but, for any it is NP-complete, given an uncolored graph, to test whether it is -partite. However, in some applications of graph theory, a -partite graph may be given as input to a computation with its coloring already determined; this can happen when the sets of vertices in the graph represent different types of objects. For instance, folksonomies have been modeled mathematically by tripartite graphs in which the three sets of vertices in the graph represent users of a system, resources that the users are tagging, and tags that the users have applied to the resources. A comple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Family Of Sets
In set theory and related branches of mathematics, a family (or collection) can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection F of subsets of a given set S is called a family of subsets of S, or a family of sets over S. More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. Additionally, a family of sets may be defined as a function from a set I, known as the index set, to F, in which case the sets of the family are indexed by members of I. In some contexts, a family of sets may be allowed to contain repeated copies of any given member, and in other contexts it may form a proper class. A finite family of subsets of a finite set S is also called a '' hypergraph''. The subject of extremal set theory concerns the largest and smallest examples of families of sets satisfying certain restrictions. Examples The set of all subsets of a given set S is called the pow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Clique Complex
Clique complexes, independence complexes, flag complexes, Whitney complexes and conformal hypergraphs are closely related mathematical objects in graph theory and geometric topology that each describe the cliques (complete subgraphs) of an undirected graph. Clique complex The clique complex of an undirected graph is an abstract simplicial complex (that is, a family of finite sets closed under the operation of taking subsets), formed by the sets of vertices in the cliques of . Any subset of a clique is itself a clique, so this family of sets meets the requirement of an abstract simplicial complex that every subset of a set in the family should also be in the family. The clique complex can also be viewed as a topological space in which each clique of vertices is represented by a simplex of dimension . The 1-skeleton of (also known as the ''underlying graph'' of the complex) is an undirected graph with a vertex for every 1-element set in the family and an edge for every 2- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matroid Intersection
In combinatorial optimization, the matroid intersection problem is to find a largest common independent set in two matroids over the same ground set. If the elements of the matroid are assigned real weights, the weighted matroid intersection problem is to find a common independent set with the maximum possible weight. These problems generalize many problems in combinatorial optimization including finding maximum matchings and maximum weight matchings in bipartite graphs and finding arborescences in directed graphs. The matroid intersection theorem, due to Jack Edmonds,. Reprinted in M. Jünger et al. (Eds.): Combinatorial Optimization (Edmonds Festschrift), LNCS 2570, pp. 1126, Springer-Verlag, 2003. says that there is always a simple upper bound certificate, consisting of a partitioning of the ground set amongst the two matroids, whose value (sum of respective ranks) equals the size of a maximum common independent set. In other words, for any two matroids M_1 = (E, \mathcal I_1) a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maximum Matching
Maximum cardinality matching is a fundamental problem in graph theory. We are given a graph , and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this problem is equivalent to the task of finding a matching that covers as many vertices as possible. An important special case of the maximum cardinality matching problem is when is a bipartite graph, whose vertices are partitioned between left vertices in and right vertices in , and edges in always connect a left vertex to a right vertex. In this case, the problem can be efficiently solved with simpler algorithms than in the general case. Algorithms for bipartite graphs Flow-based algorithm The simplest way to compute a maximum cardinality matching is to follow the Ford–Fulkerson algorithm. This algorithm solves the more general problem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Matroid
In combinatorics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid Axiomatic system, axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or ''flats''. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terms used in both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory, and coding theory. Definition There are many Cryptomorphism, equivalent ways to define a (finite) matroid. Independent sets In terms of independence, a finite matroid M is a pair (E, \mathcal), where E is a finite set (called the ''gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matroid Minor
In the mathematical theory of matroids, a minor of a matroid ''M'' is another matroid ''N'' that is obtained from ''M'' by a sequence of restriction and contraction operations. Matroid minors are closely related to graph minors, and the restriction and contraction operations by which they are formed correspond to edge deletion and edge contraction operations in graphs. The theory of matroid minors leads to structural decompositions of matroids, and characterizations of matroid families by forbidden minors, analogous to the corresponding theory in graphs. Definitions If ''M'' is a matroid on the set ''E'' and ''S'' is a subset of ''E'', then the restriction of ''M'' to ''S'', written ''M'' , ''S'', is the matroid on the set ''S'' whose independent sets are the independent sets of ''M'' that are contained in ''S''. Its circuits are the circuits of ''M'' that are contained in ''S'' and its rank function is that of ''M'' restricted to subsets of ''S''. If ''T'' is an independent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dual Matroid
Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual number, a number system used in automatic differentiation * Dual (grammatical number), a grammatical category used in some languages * Dual county, a Gaelic games county which competes in both Gaelic football and hurling * Dual diagnosis, a psychiatric diagnosis of co-occurrence of substance abuse and a mental problem * Dual fertilization, simultaneous application of a P-type and N-type fertilizer * Dual impedance, electrical circuits that are the dual of each other * Dual SIM cellphone supporting use of two SIMs * Aerochute International Dual a two-seat Australian powered parachute design Acronyms and other uses * Dual (brand), a manufacturer of Hifi equipment * DUAL (cognitive architecture), an artificial intelligence design model * DUA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]