Overvolting
   HOME
*





Overvolting
Dynamic voltage scaling is a power management technique in computer architecture, where the voltage used in a component is increased or decreased, depending upon circumstances. Dynamic voltage scaling to increase voltage is known as overvolting; dynamic voltage scaling to decrease voltage is known as undervolting. Undervolting is done in order to conserve power, particularly in laptops and other mobile devices, where energy comes from a battery and thus is limited, or in rare cases, to increase reliability. Overvolting is done in order to support higher frequencies for performance. The term "overvolting" is also used to refer to increasing static operating voltage of computer components to allow operation at higher speed (overclocking). Background MOSFET-based digital circuits operate using voltages at circuit nodes to represent logical state. The voltage at these nodes switches between a high voltage and a low voltage during normal operation—when the inputs to a logic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Power Management
Power management is a feature of some electrical appliances, especially copiers, computers, computer CPUs, computer GPUs and computer peripherals such as monitors and printers, that turns off the power or switches the system to a low-power state when inactive. In computing this is known as PC power management and is built around a standard called ACPI, this supersedes APM. All recent computers have ACPI support. Motivations PC power management for computer systems is desired for many reasons, particularly: * Reduce overall energy consumption * Prolong battery life for portable and embedded systems * Reduce cooling requirements * Reduce noise * Reduce operating costs for energy and cooling Lower power consumption also means lower heat dissipation, which increases system stability, and less energy use, which saves money and reduces the impact on the environment. Processor level techniques The power management for microprocessors can be done over the whole processor, or in spe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Video Card
A graphics card (also called a video card, display card, graphics adapter, VGA card/VGA, video adapter, display adapter, or mistakenly GPU) is an expansion card which generates a feed of output images to a display device, such as a computer monitor. Graphics cards are sometimes called discrete or dedicated graphics cards to emphasize their distinction to integrated graphics. A graphics processing unit that performs the necessary computations is the main component of a graphics card, but the acronym "GPU" is sometimes also used to refer to the graphics card as a whole. Most graphics cards are not limited to simple display output. The graphics processing unit can be used for additional processing, which reduces the load from the central processing unit. Additionally, computing platforms such as OpenCL and CUDA allow using graphics cards for general-purpose computing. Applications of general-purpose computing on graphics cards include AI training, cryptocurrency mining, and molec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crash (computing)
In computing, a crash, or system crash, occurs when a computer program such as a software application or an operating system stops functioning properly and exits. On some operating systems or individual applications, a crash reporting service will report the crash and any details relating to it (or give the user the option to do so), usually to the developer(s) of the application. If the program is a critical part of the operating system, the entire system may crash or hang, often resulting in a kernel panic or fatal system error. Most crashes are the result of a software bug. Typical causes include accessing invalid memory addresses, incorrect address values in the program counter, buffer overflow, overwriting a portion of the affected program code due to an earlier bug, executing invalid machine instructions (an illegal opcode), or triggering an unhandled exception. The original software bug that started this chain of events is typically considered to be the cause of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dynamic Frequency Scaling
Dynamic frequency scaling (also known as CPU throttling) is a power management technique in computer architecture whereby the frequency of a microprocessor can be automatically adjusted "on the fly" depending on the actual needs, to conserve power and reduce the amount of heat generated by the chip. Dynamic frequency scaling helps preserve battery on mobile devices and decrease cooling cost and noise on quiet computing settings, or can be useful as a security measure for overheated systems (e.g. after poor overclocking). Dynamic frequency scaling almost always appear in conjunction with dynamic voltage scaling, since higher frequencies require higher supply voltages for the digital circuit to yield correct results. The combined topic is known as dynamic voltage and frequency scaling (DVFS). Processor throttling is also known as "automatic underclocking". Automatic overclocking (boosting) is also technically a form of dynamic frequency scaling, but it's relatively new and usu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Asynchronous Array Of Simple Processors
Asynchrony is the state of not being in synchronization. Asynchrony or asynchronous may refer to: Electronics and computing * Asynchrony (computer programming), the occurrence of events independent of the main program flow, and ways to deal with such events ** Async/await * Asynchronous system, a system having no global clock, instead operating under distributed control ** Asynchronous circuit, a sequential digital logic circuit not governed by a clock circuit or signal ** Asynchronous communication, transmission of data without the use of an external clock signal * Asynchronous cellular automaton, a mathematical model of discrete cells which update their state independently * Asynchronous operation, a sequence of operations executed out of time coincidence with any event Other uses * Asynchrony (game theory), when players in games update their strategies at different time intervals * Asynchronous learning, an educational method in which the teacher and student are separated in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

IC Power Supply Pin
IC power-supply pins denote a voltage and current supply terminals in electric, electronics engineering, and in Integrated circuit design. Integrated circuits (ICs) have at least two pins that connect to the power rails of the circuit in which they are installed. These are known as the power-supply pins. However, the labeling of the pins varies by IC family and manufacturer. The double subscript notation usually corresponds to a first letter in a given IC family (transistors) notation of the terminals (e.g. VDD supply for a drain terminal in FETs etc.). The simplest labels are V+ and V−, but internal design and historical traditions have led to a variety of other labels being used. V+ and V− may also refer to the non-inverting (+) and inverting (−) voltage inputs of ICs like op amps. For power supplies, sometimes one of the supply rails is referred to as ground (abbreviated "GND") positive and negative voltages are relative to the ground. In digital electronics, negat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

OMAP
The OMAP (Open Multimedia Applications Platform) family, developed by Texas Instruments, was a series of image/video processors. They are proprietary system on chips (SoCs) for portable and mobile multimedia applications. OMAP devices generally include a general-purpose ARM architecture processor core plus one or more specialized co-processors. Earlier OMAP variants commonly featured a variant of the Texas Instruments TMS320 series digital signal processor. The platform was created after December 12, 2002, as STMicroelectronics and Texas Instruments jointly announced an initiative for ''Open Mobile Application Processor Interfaces'' (OMAPI) intended to be used with 2.5 and 3G mobile phones, that were going to be produced during 2003. (This was later merged into a larger initiative and renamed the MIPI Alliance.) The OMAP was Texas Instruments' implementation of this standard. (The STMicroelectronics implementation was named Nomadik.) OMAP did enjoy some success in the smartphon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Texas Instruments
Texas Instruments Incorporated (TI) is an American technology company headquartered in Dallas, Texas, that designs and manufactures semiconductors and various integrated circuits, which it sells to electronics designers and manufacturers globally. It is one of the top 10 semiconductor companies worldwide based on sales volume. The company's focus is on developing analog chips and embedded processors, which account for more than 80% of its revenue. TI also produces TI digital light processing technology and education technology products including calculators, microcontrollers, and multi-core processors. The company holds 45,000 patents worldwide as of 2016. Texas Instruments emerged in 1951 after a reorganization of Geophysical Service Incorporated, a company founded in 1930 that manufactured equipment for use in the seismic industry, as well as defense electronics. TI produced the world's first commercial silicon transistor in 1954, and the same year designed and manufactured t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Leakage (semiconductors)
In electronics, leakage is the gradual transfer of electrical energy across a boundary normally viewed as insulating, such as the spontaneous discharge of a charged capacitor, magnetic coupling of a transformer with other components, or flow of current across a transistor in the "off" state or a reverse-polarized diode. In capacitors Gradual loss of energy from a charged capacitor is primarily caused by electronic devices attached to the capacitors, such as transistors or diodes, which conduct a small amount of current even when they are turned off. Even though this off current is an order of magnitude less than the current through the device when it is on, the current still slowly discharges the capacitor. Another contributor to leakage from a capacitor is from the undesired imperfection of some dielectric materials used in capacitors, also known as ''dielectric leakage''. It is a result of the dielectric material not being a perfect insulator and having some non-zero conductivit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Domino Logic
Domino logic is a CMOS-based evolution of the dynamic logic techniques based on either PMOS or NMOS transistors. It allows a rail-to-rail logic swing. It was developed to speed up circuits, solving the premature cascade problem, typically by inserting small and fast pFETs between domino stages to constrain the interstage cascade velocity to a curtailed maximum—a curtailed ''deterministic'' maximum—without requiring other circuit design interlocks. Terminology The term derives from the fact that in domino logic (cascade structure consisting of several stages), each stage ripples the next stage for evaluation, similar to dominoes falling one after the other. Dynamic logic drawbacks In dynamic logic, a problem arises when cascading one gate to the next. The precharge "1" state of the first gate may cause the second gate to discharge prematurely, before the first gate has reached its correct state. This uses up the "precharge" of the second gate, which cannot be restored ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamic Logic (digital Electronics)
In integrated circuit design, dynamic logic (or sometimes clocked logic) is a design methodology in combinatory logic circuits, particularly those implemented in MOS technology. It is distinguished from the so-called static logic by exploiting temporary storage of information in stray and gate capacitances. It was popular in the 1970s and has seen a recent resurgence in the design of high speed digital electronics, particularly computer CPUs. Dynamic logic circuits are usually faster than static counterparts, and require less surface area, but are more difficult to design. Dynamic logic has a higher toggle rate than static logic but the capacitive loads being toggled are smaller so the overall power consumption of dynamic logic may be higher or lower depending on various tradeoffs. When referring to a particular logic family, the dynamic adjective usually suffices to distinguish the design methodology, e.g. ''dynamic CMOS'' or ''dynamic SOI'' design. Dynamic logic is distin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Voltage
Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to move a test charge between the two points. In the International System of Units, the derived unit for voltage is named ''volt''. The voltage between points can be caused by the build-up of electric charge (e.g., a capacitor), and from an electromotive force (e.g., electromagnetic induction in generator, inductors, and transformers). On a macroscopic scale, a potential difference can be caused by electrochemical processes (e.g., cells and batteries), the pressure-induced piezoelectric effect, and the thermoelectric effect. A voltmeter can be used to measure the voltage between two points in a system. Often a common reference potential such as the ground of the system is used as one of the points. A voltage can represent either a source ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]